Function Transformations: Translations
Goals:

- Describe a horizontal and vertical translations in the form $T(x)=f(x-h)+k$.
- Understands that horizontal translations look to act in the opposite direction.
- Describe a horizontal and vertical stretch/compression/reflection in the form $T(x)=a \cdot f(b x)$
- Understands that the intercepts are invariant points after an expansion or reflection.

Terminology:

- Translation
- Mapping
- Image
- Expansion \& Compression
- Reflection

Functions are operations. When we see the function $f(x)=y$ what is being denoted is a relationship of x to y and we can write it as follows using mapping notation

$$
x \mapsto y=(x, y)
$$

For example: If $f(1)=3$ and $f(2)=-1$ then

We are going to be looking at two major ways we can manipulate a function $f(x)$, and transform it into a new function, $T(x)$. For now, we will focus on just sliding the function around in 2D space (can move it horizontally and vertically).
These are called translations.

$$
(x, y) \longmapsto(u, r)
$$

Examples:

$$
\begin{aligned}
& (1,1) \mapsto(1,-2) \\
& (-2,4) \mapsto(-2,1) \\
& (x, y) \mapsto(x, y-3)
\end{aligned}
$$

$$
\begin{aligned}
& (1,1) \longmapsto(2,1) \\
& (-2, y) \longmapsto(-1,4) \\
& (x, y) \longmapsto(x+1, y)
\end{aligned}
$$

shat right 1

For a vertical translation, we take our original function where $y=f(x)$ and...

$$
\begin{aligned}
& (x, y) \longmapsto(x, y+d) \\
& g(x)=f(x)+d
\end{aligned}
$$

For a horizontal translation, we shift the function left and right but ...

** After a transformation, the resulting function is called the image function.
Example 1: Given the graph of f, graph the image function after being translated 2 units right and 1 unit down. Write the mapping notation and function notation of the transformation

$$
\begin{aligned}
&(x, y) \longmapsto(x+2, y-1) \\
&(-2,2) \longmapsto(0,1) \\
&(0,-2) \mapsto(2,-3) \\
&(2,-2) \mapsto(4,-3) \\
& g(x)=f(x-2)-1
\end{aligned}
$$

Practice: Given the graph of g, graph the image function after being translated 1 unit left and 2 units up. Write the mapping notation and function notation of the transformation

$$
\begin{aligned}
(x, y) & \mapsto(x-1, y+2) \\
T(x) & \mapsto g(x+1)+2 \\
(0,1) & \mapsto(-1,3)
\end{aligned}
$$

Practice: Given the graph of g, graph the image function after it has been translated as follows:

$$
(x, y) \mapsto(x, y-3)
$$

Practice: Given the graph of g, graph the image function after it has been translated as follows:

$$
T(x)=g(x-1)
$$

$$
(x, y) \mapsto(x+1, y)
$$

Aside from translating a function which preserves the general characteristics of the function (it just got moved around the graph) we can transform the graph in a more significant manner by stretching and compressing it relative to either axis.

For a vertical expansion or compression (expansion about the x-axis), we take our original function where $y=f(x)$ and...

$$
\begin{gathered}
(x, y) \mapsto(x, a y) \\
g(x)=a f(x) \\
\cdots(x, 0) \mapsto(x, a-0)=(x, 0)
\end{gathered}
$$

For a horizontal expansion or compression (expansion about the y-axis), we have that...

$$
\begin{aligned}
& (x, y) \mapsto(b x, y) \text { opposite when } \\
& g(x)=f\left(\frac{1}{b} x\right)^{\text {inside }} \\
& \text { on } 0, y) \rightarrow(b 0, y)=(0, y) \text { mavilent point }
\end{aligned}
$$

Example 2: Given the graph of f, graph the image function after it haswertically been compressed by a factor of 2 and horizontally expanded by a factor $\frac{3}{2}$. Write the mapping notation and function notation of the transformation.

$$
\begin{aligned}
& (x, y) \mapsto\left(\frac{3}{2} x, \frac{1}{2} y\right) \\
& (-2,2) \mapsto(-3,1) \\
& (0,-2) \mapsto(0,-1) \\
& (2,-2) \mapsto(3,-1) \\
& g(x)=\frac{1}{2} f\left(\frac{2}{3} x\right)
\end{aligned}
$$

Practice: Given the graph of g, graph the image function after it has been translated as follows:

$$
\begin{aligned}
& (x, y) \mapsto\left(\frac{1}{3} x, y\right) \\
& T_{(x)}=g_{(3 x)} \\
& (0,1) \mapsto(0,1) \quad(3,0) \longmapsto(1,0) \\
& (1,2) \mapsto\left(\frac{1}{3}, 2\right)
\end{aligned}
$$

Practice: Given the graph of g, graph the image function after it has been translated as follows:

$$
\begin{aligned}
& T(x)=2 g\left(\frac{1}{2} x\right) \\
& (x, y) \not 尸(2 x, 2 y) \\
& (0,1) \longmapsto(0,2) \\
& (1,2) \mapsto(2,4) \\
& (3,0)
\end{aligned}>(6,0)
$$

If the value of a or b is negative, this means we have the cases of a reflection.

$$
(x, y) \mapsto(x,-y)
$$

Practice: Given the graph of g, graph the image function after it has been reflected over the y-axis. Write the mapping notation and function notation of the transformation.

Practice: Given the graph of g, graph the image function after it has been translated as follows:

$$
T(x)=-\frac{3}{2} g(-x)
$$

Suggested problems: 1.1 page 12 - 14 \# 2-4, $8-12,16,18,19$, C1
1.2 page $28-31$ \# $3-5,7,10,12,14,16, C 1, C 2, C 3$

Textbook Reading: 1.1 page $6-12 \& 1.2$ page 16-27
Key Ideas on page 12 and 27
Next Class: Combining transformations and identifying transformed graphs

