Graphing Sine, Cosine, and Tangent

Goal:

- Can quickly graph/recognize the graph of cosine and sine and manipulate their amplitudes and periods
- Knows the general form of $a \sin(bx)$ and key points along the curve.
- Can graph $\tan \theta$ and describe its basic characteristics (period, zeros, asymptotes)

Terminology:

- Amplitude
- Period
- Sinusoidal curve
- Periodic function

Using a unit circle, graph the angle θ and the values of $\sin \theta$ and $\cos \theta$.

Trig Functions

Definition: Functions that repeat after a certain amount of time are called **periodic functions** (periodic meaning occurring at regular intervals). Periodic functions that have this "wave" shape are called **sinusoidal functions**.

The Graph of Sine and Cosine

We want to analyze this curve so that we can graph functions of the form

 $a \cdot \sin b\theta$ and $a \cdot \cos b\theta$

Definition: The *amplitude* is the distance from the midline to the maximum or minimum, or equivalently, half the distance between the max and min.

For sine and cosine,

Example: Graph the function $2 \sin \theta$ and determine the equation to the other graph.

5

7

Definition: The *period* is the length of one complete cycle of a periodic function. Not necessarily how long it takes to repeat itself, but how long it takes to repeat the pattern.

For sine and cosine,

Example: Graph the equation $sin(2\theta)$ and determine the equation to the other graph

Practice: Graph $-\frac{2}{3}\cos(\pi\theta)$ and determine the equation to the other graph.

Using the fact that $\tan \theta = \frac{\sin \theta}{\cos \theta}$ graph tangent below:

Trig Functions

The textbook uses this section to introduce you into building trig equations that model moving lengths of triangles (an important part of calculus called **related rates**).

Example: A baseball is hit and travels along the curve y = x(20 - 5x) where y is the vertical distance and x is the horizontal distance from the ball to the batter. Relate the angle the baseball makes with the batter and the horizontal distance away from the batter.

Practice: A police light shines light in two opposite directions and makes a full revolution every 1 second. If the light is positioned 10m from a wall write an expression for the distance the light travels along the wall as a function of the angle and then as a function of time.

Suggested Practice Problems: 5.1 # 4-10, 13-15, 20
5.3 # 3, 5, 8-12
Textbook Reading: 5.1 and 5.3 page 222-231 and 256-261.
Key Ideas page 232 and 262
Next Class: Transformations of Trig Function