Critical Points and Mean Value Theorem

Goal:

- Can determine critical points and intervals of increasing/decreasing.
- Can derive Rolle's Theorem and MVT
- Can use MVT to show that a function with positive derivative is increasing.

Terminology:

- Critical Point
- Global and Local Extremum
- Increasing/Decreasing
- Extreme Value Theorem
- Rolle's Theorem
- Mean Value Theorem

We are starting our final derivative unit on applications of derivatives and we are going to begin by doing some curve analysis.

We begin with some function f, not necessarily differentiable or continuous over \mathbb{R}. We want to know where does f achieve a max or minimum value (important if we want to optimize the function) and where is f increasing and decreasing (important to know how a small change in x will affect $f(x)$).

When does f achieve a max or minimum? Without a graph how would you identify it?

When is f increasing or decreasing? Without a graph how would you identify it? Definition: A critical point is when $f^{\prime}(c)=0$ or $f^{\prime}(c)$ is undefined.
\Rightarrow every max or min occurs at a critical point. $4.1 \# 52$
Definition: Given a function $f: D \rightarrow \mathbb{R}$ then $c \in D$ is an absolute maximum if

$$
f(c) \geqslant f(x) \quad \forall x \in D
$$

for all

Definition: Given a function $f: D \rightarrow \mathbb{R}$ then $c \in D$ is a local maximum if
$f(c) \geqslant f(x) \quad \forall x$ in some open interval that is in D

IP all extrema occur e critical points \& endpoints
Practice: Find all extrema for the following function on the indicated domain

$$
\begin{array}{ll}
f(x)=\frac{1}{x}+\ln x, \sqrt{0.5 \leq x \leq 4} & g(x)=x^{\frac{2}{3},} \\
f^{\prime}(x)=-\frac{1}{x^{2}}+\frac{1}{x}=\frac{1-x}{x^{2}} & g^{\prime}=\frac{2}{3} x^{-1 / 3} \quad x \neq 0 \\
x=0 \text { is a crit. point } & x=0 \text { is a critical pout } \\
x=1 \text { is a " } & g(-3)=2.08 \text { abs max } \\
f(015)=1.3 \ldots \text { local max } & g(0)=0 \text { abs min } \\
f(1)=1 \text { abs min } & g(1)=1 \text { nothi } \gamma \\
f(4)=1.6 \text { abs max } &
\end{array}
$$

Theorem: The extreme value theorem says the function f will achieve a maximum and minimum value on it's domain if
f is continuous on
Domain D
and

is
closed
(
$[1,4]$)
not $(1,4)$

We are going to use the extreme value theorem to prove on of the most important theorems in calculus, but first a classic anecdote:
"Police have two radar controls at a highway, say at kilometre 11 and at kilometre 20 . The speed limit is $70 \mathrm{~km} / \mathrm{h}$. They measure a truck going through the first control, at 11:11am, at $65 \mathrm{~km} / \mathrm{h}$, and going through the second control at $11: 17 \mathrm{am}$, at $67 \mathrm{~km} / \mathrm{h}$. They issue a speeding ticket. Why?"

Theorem: The Mean Value Theorem says that if $f:[a, b] \rightarrow \mathbb{R}$ is continuous and differentiable on (a, b) then ...
$\exists c \in(a, b)$ such that
There exists

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}=\frac{\Delta y}{\Delta x}
$$

$\exists c \in(a, b)$ such that $f^{\prime}(c)=0$
case I
if $f(a)$ is the maximin
case II

$f(c)$ is the abs min.
since f is differatiable

$$
f^{\prime}(c)=0
$$

$$
\Rightarrow f^{\prime}(c)=0 \quad \forall x \in(a, b)
$$

P of MVT:
make g (linear) such that $f(a)=g(a) ; f(b)=g(b)$

$$
\begin{aligned}
& F(x)=f(x)-g(x) \text {. Note } F(a)=F(b)=0 \\
& \exists c \in(a
\end{aligned}
$$

\Rightarrow Poles guarantees $\exists c \in(a, b)$

I mentioned that MVT is one of the most important theorems and it is at the heart of a lot of important results, we'll look at two here but understanding MVT and feeling comfortable to apply it will make you a better calculus student.

Definition: A function is (strictly) increasing on the interval I if $\forall x, y \in I$ with $x<y$, then we get $f(x)<f(y)$.
Corollary: A function is (strictly) increasing on the closed interval $[a, b]$ if f is differentiable on (a, b), continuous on $[a, b]$ and $f^{\prime}(c)>0 \forall c \in(a, b)$
Proof:

Consider

MUT

\exists
$c \in(x, y)$ such
that

We can also use MVT to prove inequalities. For example, a simpler version of the inequality on the last assignment

$$
x+1 \leq e^{x} \text { when } x \leq 0
$$

Proof:

Practice: Prove that $\cos x \geq 1-x$ when $x \geq 0$

Practice Problems: 4.1: \# 1-6 and 11-30 (select), 49, 50, 52

$$
\text { 4.2: \# 1-14 (select), 15-18, 21-24, 35-42, 47, 56, } 57
$$

Textbook Readings: 4.1 page 177-183 and 4.2 page 186-188
Workbook Practice: page 177-181, 234-237
Next Day: First and Second Derivative Tests

