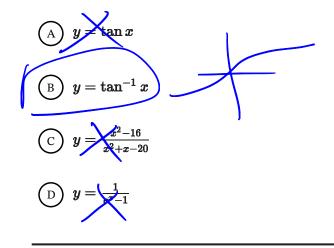
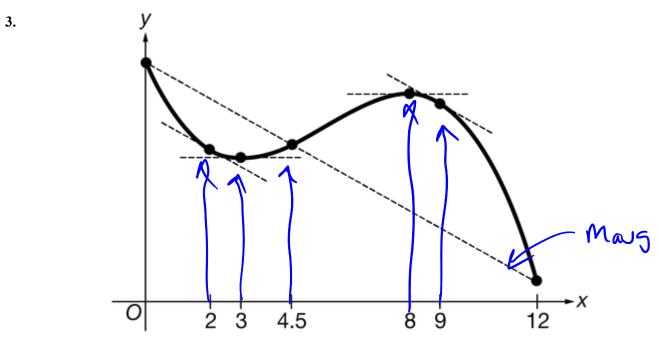

Name


1.

x	10	11	12	13	14
f(x)	5	2	3	6	5

The table above gives values of the continuous function f at selected values of x. If f has exactly two critical points on the open interval (10, 14), which of the following must be true?


2. Which of the following functions of x is guaranteed by the Extreme Value Theorem to have an absolute maximum on the interval [0, 4]?

MVT Wrap Up

 \mathbf{C}

The function f shown in the figure above is continuous on the closed interval [0, 12] and differentiable on the open interval (0, 12). Based on the graph, what are all values of x that satisfy the conclusion of the Mean Value Theorem applied to f on the closed interval [0, 12]?

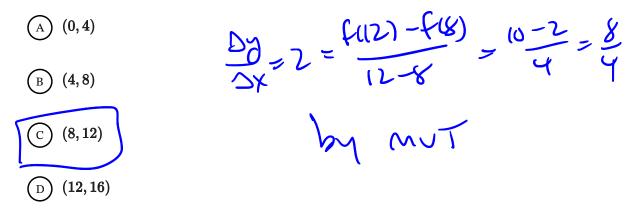
(A) 4.5 only because this is the value where f(x) equals the average rate of change of f on [0, 12].

B) 3 and 8 because these are the values where f'(x) = 0 on [0, 12].

2 and 9 only because these are the values where the instantaneous rate of change of f at those values is equal to the average rate of change of f on [0, 12].

2, 4.5, and 9 because these are the values where either the instantaneous rate of change of f at the value is equal to the average rate of change of f on [0, 12] or the value of f(x) is equal to the average rate of change of f on [0, 12].

4. The Mean Value Theorem can be applied to which of the following functions on the closed interval [-3,3]?

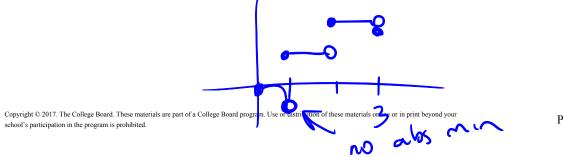

AP Calculus AB

MVT Wrap Up

 $f(x) \neq x^{\frac{2}{3}}$ not differentially f(x) = |x| + 1| not diff. в $\bigcirc f(x) = \frac{x-2}{x-5}$ Cort. not (D) f(x)

5.	\boldsymbol{x}	0	4	8	12	16
	f(x)	8	0	2	10	1

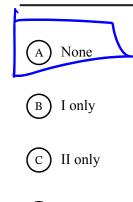
The table above gives selected values for the differentiable function f. In which of the following intervals must there be a number c such that f'(c) = 2?

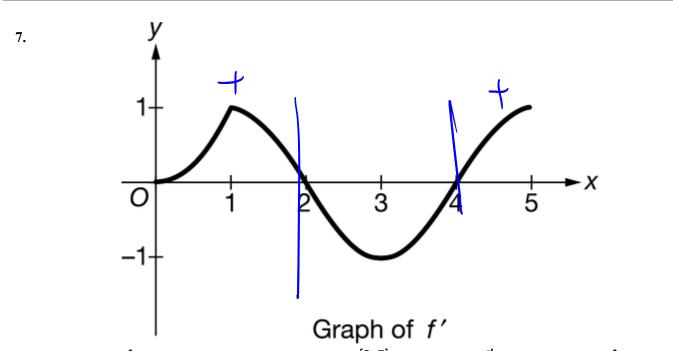


6.	\boldsymbol{x}	0	1	2	3	don't have continuity or differentiability.
	f(x)	0	4	7	6	differentiability.

Let f be a function with selected values given in the table above. Which of the following statements must be true?

- 1. By the Intermediate Value Theorem, there is a value c in the interval (0,3) such that f(c) = 2.
- 2. By the Mean Value Theorem, there is a value c in the interval (0,3) such that $\mathbf{k}'(c) = 2$.


3. By the Extreme Value Theorem, there is a value c in the interval [0,3] such that $f(c) \le f(x)$ for all x in the interval [0,3].


١,

MVT Wrap Up

D I, II, and III

The function f is continuous on the closed interval [0, 5]. The graph of f', the derivative of f, is shown above. On which of the following intervals is f increasing?

(A) [0,1] and [2,4]

(B) [0,1] and [3,5]

C [0, 1] and [4, 5] only D [0, 2] and [4, 5]

MVT Wrap Up