

The rate at which ants arrive at a picnic is modeled by the function $A$, where $A(t)$ is measured in ants per minute and $t$ is measured in minutes. The graph of $A$ for $0 \leq t \leq 30$ is shown in the figure above. How many ants arrive at the picnic during the time interval $0 \leq t \leq 30$ ?
(A) 8
(B) 70
(C) 120
(D) 140


The rate at which people arrive at a theater box office is modeled by the function $B$, where $B(t)$ is measured in people per minute and $t$ is measured in minutes. The graph of $B$ for $0 \leq t \leq 20$ is shown in the figure above. Which of the following is closest to the number of people that arrive at the box office during the time interval $0 \leq t \leq 20$ ?
(A) 15
(B) 38
(C) 150
(D) 188
3. A particle with velocity at any time $t$ given by $v(t)=e^{t}$ moves in a straight line. How far does the particle move from $t=0$ to $t=2$ ?

## Wrap Up Accumulation

(A) $e^{2}-1$
(B) $e-1$
(C) $2 e$
(D) $e^{2}$
(E) $\frac{e^{3}}{3}$
4. Snow is falling at a rate of $\mathrm{r}(\mathrm{t})=2 \mathrm{e}^{-0.1 t}$ inches per hour, where $t$ is the time in hours since the beginning of the snowfall. Which of the following expressions gives the amount of snow, in inches, that falls from time $t=0$ to time $t=5$ hours?
(A) $2 \mathrm{e}^{-0.5}-2$
(B) $0.2-0.2 \mathrm{e}^{-0.5}$
(C) $4-4 \mathrm{e}^{-0.5}$
(D) $20-20 \mathrm{e}^{-0.5}$

