First and Second Derivative Test

Goal:

- Can use the first derivative test and second derivative test to find extrema
- Can determine concavity by considering f^{\prime} or $f^{\prime \prime}$

Terminology:

- First Derivative Test
- Concavity
- Inflection Point
- Second Derivative Test

We are going to consider that $f:[a, b] \rightarrow \mathbb{R}$ is continuous and we want to find a way to determine if a critical point is a maximum or a minimum. Note that f need not be differentiable on (a, b).

Recall: If f is differentiable on (a, b), continuous on $[a, b]$ and $f^{\prime}(x)>0 \forall x \in(a, b)$ then f is (strictly) increasing on $[a, b]$.

Proof:

Theorem: The first derivative test says that if f is continuous on $[a, b]$ and we have that $f^{\prime}(x)>0$ on (a, c) and $f^{\prime}(x)<0$ on (c, b), then $x=c$ is a local maximum.

Proof:

Practice: Use the first derivative test to find all extrema of the following functions:

$$
f(x)=x^{3}-x, \quad x \in[-1,2] \quad g(x)=2 x^{4}+4 x^{3}-1, \quad x \in[-2,1]
$$

$$
h(x)=e^{\cos x}, \quad x \in[-2,4]
$$

$$
\text { The following is a graph of } \frac{d k}{d x} \text { for some continuous } k
$$

Definition: A differentiable function is concave up on (a, b) if f^{\prime} is (strictly) increasing on (a, b). Note the open intervals as f^{\prime} may not exist at the endpoints.
${ }^{* *}$ If f is differentiable on $[a, b]$ then concave up implies f^{\prime} is (strictly) increading on $[a, b]$
Note that if the function is twice differentiable, we can say that if f^{\prime} is increasing on [a,b], then $f^{\prime \prime}(x)>0 \forall x \in(a, b)$

Theorem: The second derivative test says that if f is twice differentiable in an open interval (a, b), and $f^{\prime}(c)=0$, and $f^{\prime \prime}(x)<0 \forall x \in(a, b)$, then $f(c)$ is a local maximum on $[a, b]$.

Proof:

Definition: Whenever $f^{\prime \prime}$ changes sign, we have a inflection point

Practice: Determine the intervals the functions are concave up/down

$$
\ell(x)=\frac{x}{x^{2}+1}
$$

$$
m(x)=x^{3} e^{x}
$$

Practice: Use the second derivative test to find the local max and minimums. Assume that n is continuous.

x	$x<A$	A	$A<x<B$	B	$B<x<C$	C	$x>C$
$n^{\prime \prime}(x)$	Positive	0	Negative	undefined	Positive	0	Positive
$n^{\prime}(x)$	0	5	0	undefined	0	0	Positive
	For some		For some		For some		
	$a<A$		$a_{b} \in(A, B)$		$b_{c} \in(B, C)$		

Consider the graph of $p^{\prime \prime}$ below. If $p^{\prime}(x)=0$ when $x=1.7,4$, and 5.3 then determine where the extrema of p occur and the type of extrema.

Practice Problems: 4.3: \# 5-12 (select), 13-28 (select and use technology), 41-44, 50, 52
Textbook Readings: 4.3 page 194-200
Workbook Practice: page 182-193
Next Day: Curve Sketching

