First and Second Derivative Test

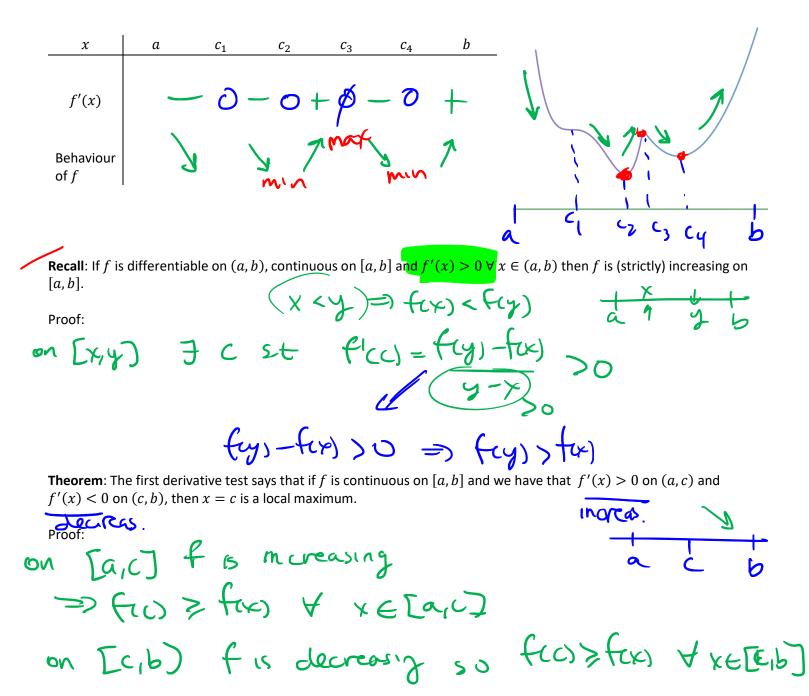
Goal:

- Can use the first derivative test and second derivative test to find extrema
- Can determine concavity by considering f' or f''

Terminology:

- First Derivative Test
- Concavity
- Inflection Point
- Second Derivative Test

We are going to consider that $f: [a, b] \to \mathbb{R}$ is continuous and we want to find a way to determine if a critical point is a maximum or a minimum. Note that f need not be differentiable on (a, b).

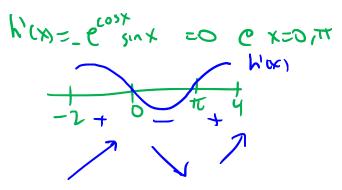


Practice: Use the first derivative test to find all extrema of the following functions: $f(x) = x^3 - x, \quad x \in [-1, 2]$ $g(x) = 2x^4 + 4x^3 - 1, \quad x \in [-2, 1]$

$$f'_{(x_1)} = 3 x^2 - 1 = 0$$
 $e_{x} = \pm \frac{1}{\sqrt{3}}$
 $f'_{(x_3)} = \frac{1}{\sqrt{3}} + \frac{$

max
$$c f(-\frac{1}{\sqrt{3}}) = 0.4$$

min $c f(\frac{1}{\sqrt{3}}) = -0.4$ (abs)
max $c f(2) = 6$ (abs)
min $c f(-1) = 0$
 $h(x) = e^{\cos x}, \quad x \in [-2,4]$



min $e^{f(-2)=0.6}$ max $e^{f(0)=e^{(ab)}}$ min $e^{f(ti)=\frac{1}{e}=0.4(ab)}$ max $e^{f(4)=0.5}$

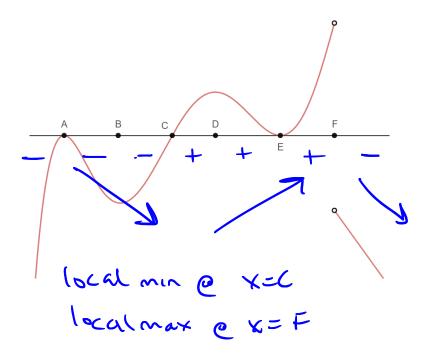
$$g'(x) = 8x^{3} + 12x^{2}$$

$$D = 9x^{2}(2x + 3)$$

(* K=0 $x = -3/2$

$$\int \frac{g'(x)}{1-2} + \frac{g'(x)}{1-2} + \frac{1}{1-2} + \frac{1}{1-2}$$

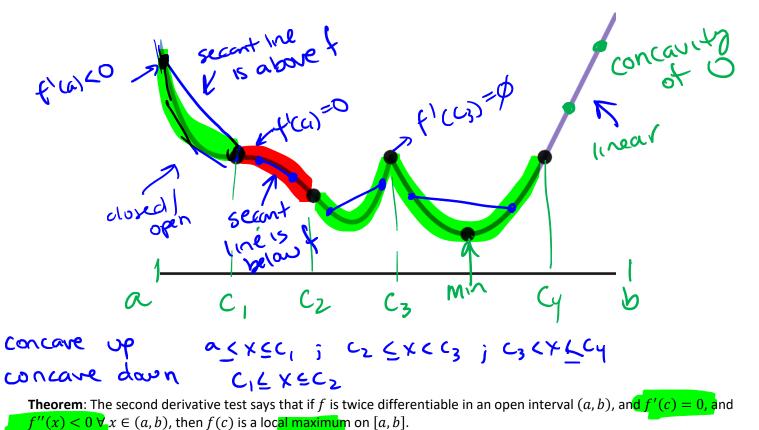
The following is a graph of $\frac{dk}{dx}$ for some continuous k



Definition: A differentiable function is *concave up* on (a, b) if f' is (strictly) increasing on (a, b). Note the open intervals as f' may not exist at the endpoints.

**If f is differentiable on [a, b] then concave up implies f' is (strictly) increading on [a, b]

Note that if the function is twice differentiable, we can say that if f' is increasing on [a, b], then $f''(x) > 0 \forall x \in (a, b)$



Proof: on [a, c] has mut properties =9 so find some de (a, c) s.t f1(a)<0 g'(d) = g(c) - g(a)£" (J) F1(a)>0 & show that on [c,b] f'(b) co =) fcc) is a local max by 1st derivative test. **Definition**: Whenever f'' changes sign, we have a *inflection point*

Unit 3: Applications of Differentiation

Practice: Determine the intervals the functions are concave up/down

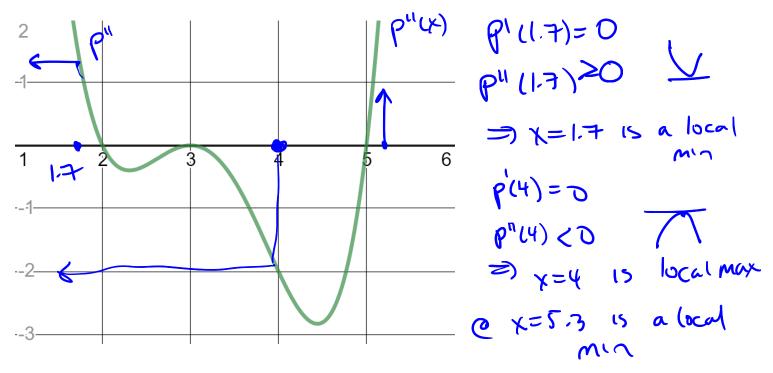
$$m(x) = x^3 e^x \qquad \qquad \mathsf{M}^{(1)}(x) > \mathsf{O}$$

```
First and Second Derivative Test Oct. 6
```

Practice: Use the second derivative test to find the local max and minimums. Assume that *n* is continuous.

x	x < A	Α	A < x < B	В	B < x < C	С	x > C
n''(x)	Rositive	0	Negative	undefined	Positive	0	Positive
n'(x)		5	0	undefined	0	0	Positive
7	For some		For some		For some		
	a < A		$a_b \in (A, B)$		$b_c \in (B, C)$		
stope							
		1	1				
@ 7=	a we	have	$_a$ lo	ial min	and Y	(=6,	
_							
χ-	a, we	hav	e a l	ocal m			
, .	- 1 0						

Consider the graph of p'' below. If p'(x) = 0 when x = 1.7, 4, and 5.3 then determine where the extrema of p occur and the type of extrema.



Practice Problems: 4.3: # 5-12 (select), 13-28 (select and use technology), 41-44, 50, 52Textbook Readings: 4.3 page 194-200Workbook Practice: page 182-193Next Day: Curve Sketching