Unit 3: Applications of Differentiation First and Second Derivative Test Oct. 6

First and Second Derivative Test

Goal:
e Can use the first derivative test and second derivative test to find extrema
e Can determine concavity by considering f or "
Terminology:
e  First Derivative Test
e Concavity
e Inflection Point
e Second Derivative Test

We are going to consider that f: [a, b] = R is continuous and we want to find a way to determine if a critical point is a
maximum or a minimum. Note that f need not be differentiable on (a, b).
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/Recall: If f is differentiable on (a, b), continuous on [a, b] a"rﬁwd f'(x)>0 Vx € (a, b) then f is (strictly) increasing on
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Theorem: The first derivative test says that if f is continuous on [a, b] and we have that f'(x) > 0 on (a,c) and

f'(x) < 0on(c, b),then x = cis a local maximum.
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Unit 3: Applications of Differentiation First and Second Derivative Test Oct. 6

Practice: Use the first derivative test to find all extrema of the following functions:

flx)=x3—x, x € [-1,2] gx) = 2x* + 4x3 — 1, x € [-2,1]
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h(x) = es¥, x € [-2,4] The following is a graph of%for some continuous k

codt

\
‘\ (.\A':_ C Su\\lx O e *;'D /TV

e H:),)v_ 0-6

max e CO) = e (a¥9)
A e funy= "é ZoY (69
mev e fi)= oy

‘QC_‘\L N~ e X=C

\°Co\\cv~p.< e x=+






















































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































































Unit 3: Applications of Differentiation First and Second Derivative Test Oct. 6

Definition: A differentiable functlon is concave up on (a,b) if f'is (strlctly) increasing on (a, b). Note the open intervals
as f'may not exist at the endpoints. =

**|f f is differentiable on [a, b] then concave up implies f" is (strictly) increading on [a, b]

Note that if the function is twice differentiable, we can say that if f' is increasing on [a, b], then f"(x) > 0V x € (a, b)
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Theorem: The second derivative test says that if f is twice differentiable in an open interval (a, b), and f (c) =0, and

f”(x) < 0Vx € (ab), then f(c) is a local maX|mum on [a,b].
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Definition: Whenever '’ changes sign, we have a inflection point
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Unit 3: Applications of Differentiation First and Second Derivative Test Oct. 6

Practice: Determine the intervals the functions are concave up/down
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Unit 3: Applications of Differentiation

Practice: Use the second derivative test to find the local max and minimums. Assume that n is continuous.

First and Second Derivative Test Oct. 6
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Consider the graph of p”’ below. If p’(x) = 0 when x = 1.7, 4, and 5.3 then determine where the extrema of p

occur and the type of extrema.
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Practice Problems: 4.3: # 5-12 (select), 13-28 (select and use technology), 41-44, 50, 52

Textbook Readings: 4.3 page 194-200

Workbook Practice: page 182-193

Next Day: Curve Sketching

























































































































































































































































































































































































































































































































































































































