Combining Stretches and Translations

Goal:

- Describe a complete transformation in the form $T(x)=a \cdot f(b(x-c))+d$.
- Understands why the standard order is Stretch then Translate, and how changing the order can change the image function.
- Knows the shape of core function: $x^{2} ;|x| ; \frac{1}{x}$

Terminology:

- none

There is noting stopping us from doing a shift and stretch in tandem; however, we need to be mindful of the order.

When we say: "Perform a vertical expansion by a factor of 2, and then shift it up 2 units", we really mean

$$
(x, y) \mapsto
$$

But when we say: "Shift it up 2 units and then expand it vertically by a factor of 2", we are doing

$$
(x, y) \mapsto
$$

** When combining transformations, the order we apply it is important!

In function notation, the standard way of expressing a combination of transformations is:

$$
T(x)=a \cdot f(b(x-c))+d
$$

Which translates in mapping notation to:

$$
(x, y) \mapsto
$$

Example 1: Given that $f(x)=|x|$, sketch the image of the following and write an equation for the image that uses absolute value instead of f

$$
-f(0.5(x+2))+1
$$

Practice: Sketch the image and write an equation for the transformations

$$
\frac{1}{2} f(-(x+1))-3
$$

$$
-f(-x+1)
$$

Practice: If $g(x)=\frac{1}{x^{\prime}}$, sketch the image function and write an equation for it using fractions instead of g

$$
-2 g(2 x+4)-2
$$

$$
g\left(\frac{4-x}{2}\right)+1
$$

Practice: If $h(x)=x^{2}$, sketch the image function and write an equation for it using powers instead of h

$$
-h(4-2 x)+3
$$

Example 3: To find the equation of a transformation we need to look at key characteristics of the function (zeros, y-intercept, asymptotes, reflections, etc)

Practice: Find the equation to the transformed graphs

Suggested Practice Problems: 1.3 page 39-43 \#1, 2, 6, 7, 9-11, 13, 16-18
Textbook Reading: 1.3 page 32-37
Key Ideas on page 38
Next Class: Inverse functions as a transformation

