Function Transformations Combinations and Order

Combining Stretches and Translations

Goal:

- Describe a complete transformation in the form $T(x) = a \cdot f(b(x-c)) + d$.
- Understands why the standard order is Stretch then Translate, and how changing the order can change the image function.
- Knows the shape of core function: x^2 ; |x|; $\frac{1}{x}$

Terminology:

none

There is noting stopping us from doing a shift and stretch in tandem; however, we need to be mindful of the order.

When we say: "Perform a vertical expansion by a factor of 2, and then shift it up 2 units", we really mean

$$(x,y) \mapsto (x, 2y+2)$$

But when we say: "Shift it up 2 units and then expand it vertically by a factor of 2", we are doing

$$(x,y) \mapsto (x, 2(y+2))$$
 $(x,y+2) \mapsto (x, 2(y+2))$

** When combining transformations, the order we apply it is important!

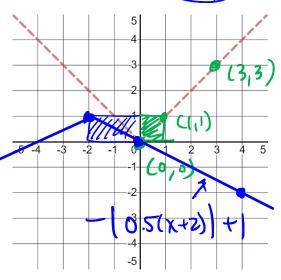
on the map use order of operations.

In function notation, the standard way of expressing a combination of transformations is:

$$T(x) = \frac{a}{a} f(b)(x-c) + d$$
a) vertical stretch; a>1 expand; |a|<| compress; a<0 Rox
b) hor 17. Stretch; b>1 compress.; |b|<| expand; b<0 Roy

Which translates in mapping notation to:

$$(x,y) \mapsto (b \times t)$$
 any $t \neq d$
Stretch shift

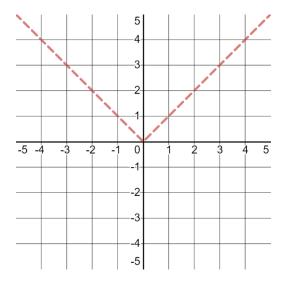

$$b(x-c) = \overline{X}$$

$$x-c=\frac{1}{b}\overline{X}$$

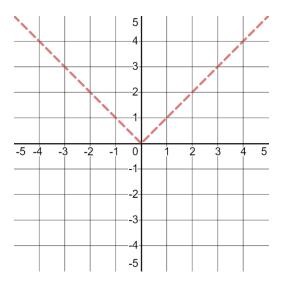
$$x = \frac{1}{b}\overline{X} + C$$

Example 1: Given that f(x) = |x|, sketch the image of the following and write an equation for the image that

uses absolute value instead of f

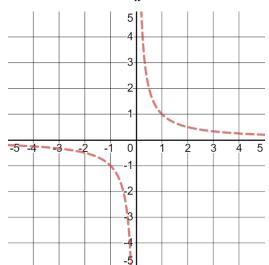


$$(x,y) \mapsto (2x-2)+1$$
abstract
$$(x,y) \mapsto (2x-2)-y+1$$
horize exfect Rox up
$$0.5(x+2) = X \Rightarrow (x+2) = 2X$$

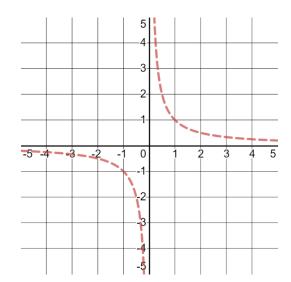

$$x = 2X-2$$

$$(0,0) \mapsto (-2,1)$$
 for $= 1 \times 1$
 $(3,3) \mapsto (-2,1)$ for $= 1 \times 1$
 $(1,1) \mapsto (0,0)$ for $= 1 \times 1$

Practice: Sketch the image and write an equation for the transformations

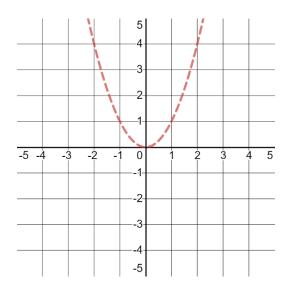


$$\frac{1}{2}f\bigl(-(x+1)\bigr)-3$$

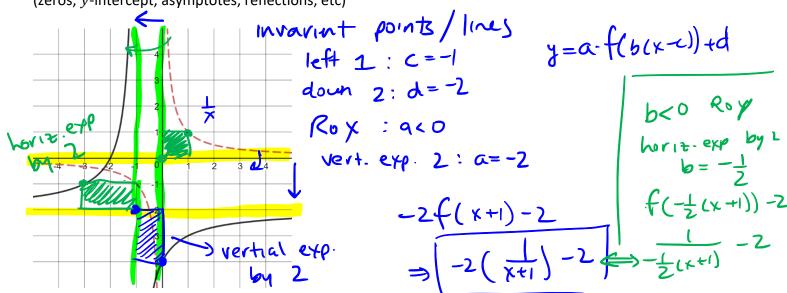


See the other Copy

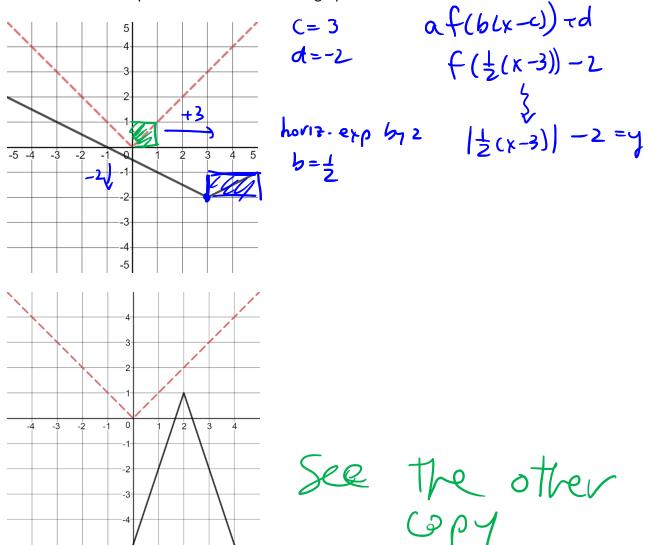
Practice: If $g(x) = \frac{1}{x}$, sketch the image function and write an equation for it using fractions instead of g


$$-2g(2x+4)-2$$

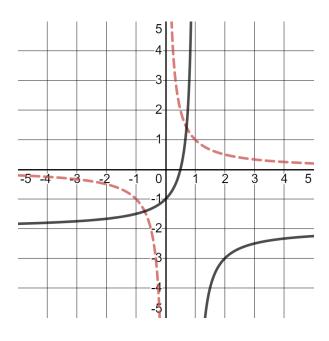
$$g\left(\frac{4-x}{2}\right)+1$$

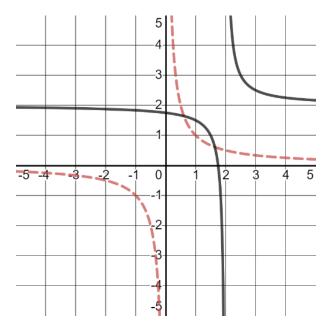

see the other

Practice: If $h(x) = x^2$, sketch the image function and write an equation for it using powers instead of h



$$-h(4-2x)+3$$


Example 3: To find the equation of a transformation we need to look at key characteristics of the function (zeros, *y*-intercept, asymptotes, reflections, etc)


Practice: Find the equation to the transformed graphs

Function Transformations Combinations and Order

Suggested Practice Problems: 1.3 page 39-43 #1, 2, 6, 7, 9-11, 13, 16-18

Textbook Reading: 1.3 page 32-37

Key Ideas on page 38

Next Class: Inverse functions as a transformation