Transformations of Sine and Cosine

Goal:

- Can graph $a \cdot \sin(b(x-c)) + d$ based on transformations (or cosine).
- Can build the equation of a sinusoidal function based on its graph or characteristics.

Terminology:

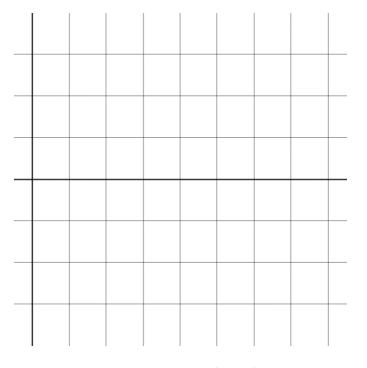
- Phase Shift
- Vertical Displacement

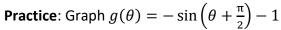
We are going to graph functions of the form $a \sin(b(x - c)) + d$ just as we did with transformations.

Definition: The phase shift is the value of

Characteristics effected are:

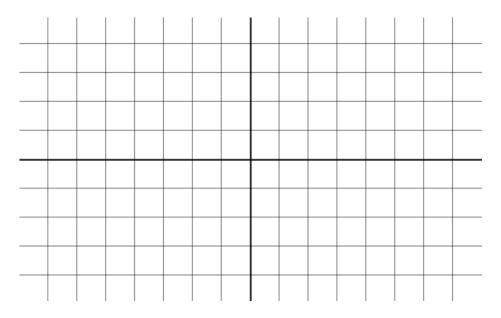
**Note that when we talk about phase shift, the transformed function is in standard form with b factored out

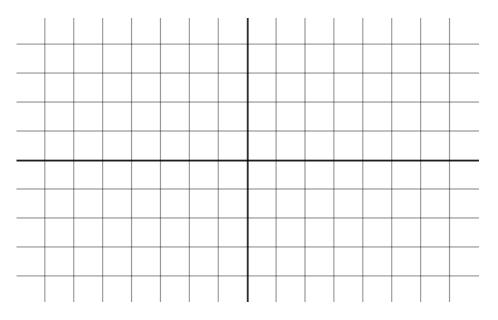

Definition: The vertical displacement is the value of


Characteristics effected are:

Trig Functions

Example: Graph $f(\theta) = 2\sin\left(\theta - \frac{\pi}{4}\right) + 1$

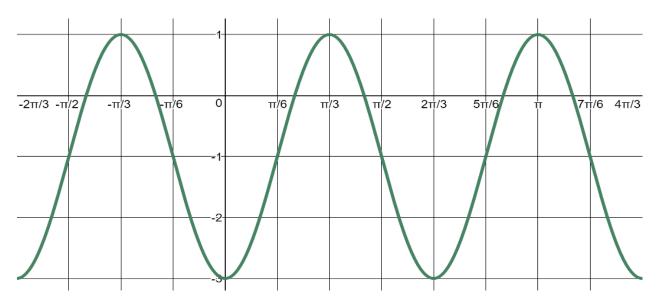

- Identify the midline from the vertical displacement
- Use the amplitude to find the max and min lines
- Use the phase shift to identify the starting point
- Split the period into quarters.



			3					
			2-					
			1-					
-2π -3π/	′2 -т	т -п	/2 0	π	/2 1	т 3т	r/2	211
-211 -011/	2 -1		2 0				172	211
			-1-					
			-2-					

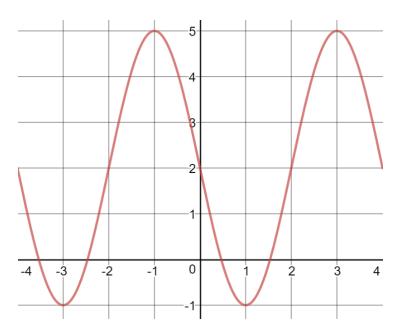
Practice: Graph $h(\theta) = 0.5 \cos\left(\frac{\pi}{3}(\theta+1)\right) - 1.5$

Practice: Graph $k(\theta) = 3\sin\left(\frac{1}{2}\left(\theta - \frac{\pi}{2}\right)\right) - 1$



Trig Functions

When trying to determine the equation of a sinusoidal function, do the same steps


- Identify the midline
- Use the midline to determine the amplitude
- Use the distance between peaks to find the period
- Decide if you want a cosine or sine equation. Pick the place to start and identify the phase shift.

Example: Determine 3 different equations that could describe the following function.

Example: Determine two equations (one sine, one cosine) that could describe a sinusoidal function that has two minimums at (-1, -3) and (3, -3) and has an amplitude of 0.5.

Practice: Determine 3 different equations that could describe the following function

Practice: Determine two equations (one sine, one cosine) that could describe a sinusoidal function that has a maximum at $\left(\frac{3\pi}{2}, 3\right)$ and the nearest minimum is at $\left(\frac{9\pi}{2}, -1\right)$.

Suggested Practice Problems: 5.2 # 1-2 (radians), 4-9, 12-16, 18, 20, 22-24, 27, 28 Textbook Reading: Reading: Textbook page 238-248 Key Ideas page 249 Next Class: Modelling Trig Equations