Transformations of Sine and Cosine
Goal:

- Can graph $a \cdot \sin (b(x-c))+d$ based on transformations (or cosine).
- Can build the equation of a sinusoidal function based on its graph or characteristics.

Terminology:

- Phase Shift
- Vertical Displacement

We are going to graph functions of the form $a \sin (b(x-c))+d$ just as we did with transformations.
Definition: The phase shift is the value of
left fright movement

Characteristics effected are:

where
we start
(sine usually in the middle)
(cosine usually at the top)
**Note that when we talk about phase shift, the transformed function is in standard form with b factored out
Definition: The vertical displacement is the value of

up down movement

Characteristics effected are:

$$
\frac{p}{1}
$$

where my
midline occurs
normally
@ $y=0$

Trig Functions
Example: $\operatorname{Graph} f(\theta)=2 \sin \left(\theta-\frac{\pi}{4}\right)+1$
Identify the midline from the vertical displacement
Use the amplitude to find the max and min lines
Use the phase shift to identify the starting point

- Split the period into quarters.

$$
T=2 \pi
$$

$$
\text { right } \pi / 4
$$

Practice: Graph $g(\theta)=-\sin \left(\theta+\frac{\pi}{2}\right)-1$
$a=1$ (amplitude)

$$
d=-1 \text { (midline) }
$$

$$
\pi / 2 \text { left }
$$

$$
T=2 \pi
$$

Trig Functions
Practice: Graph $h(\theta)=0.5 \cos \left(\frac{\pi}{3}(\theta+1)\right)-1.5$

$$
T=\frac{2 \pi}{\pi / 3}=6
$$

Practice: $\operatorname{Graph} k(\theta)=3 \sin \left(\frac{1}{2}\left(\theta-\frac{\pi}{2}\right)\right)-1$
$\operatorname{amp}=3$
mid line $=-1$

$$
T=\frac{2 \pi}{1 / 2}=4 \pi
$$

$$
\pi / 2 \text { right }
$$

When trying to determine the equation of a sinusoidal function, do the same steps

- Identify the midline
- Use the midline to determine the amplitude
- Use the distance between peaks to find the period
- Decide if you want a cosine or sine equation. Pick the place to start and identify the phase shift.

Example: Determine two equations (one sine, one cosine) that could describe a sinusoidal function that has two minimums at $(-1,-3)$ and $(3,-3)$ and has an amplitude of 0.5 .

$$
t=4
$$

$$
C(2) \quad \sin \theta, c=0
$$

$$
b=\frac{2 \pi}{4}=\frac{\pi}{2}
$$

$$
\begin{aligned}
& \text { (4) (0,-2.5) } \quad a=0.5 \quad-\cos \theta, c=-1 \\
& \begin{array}{c}
0.4-1(2) \cdot(3,-3) \\
(-1,-3)
\end{array} \quad y=-2.5=d \\
& \Rightarrow y=-0.5 \cos \frac{\pi}{2}(\theta+1)-2.5
\end{aligned}
$$

Practice: Determine 3 different equations that could describe the following function

$$
(3)=-3 \cos \frac{\pi}{2}(\theta-1)+2
$$

Practice: Determine two equations (one sine, one cosine) that could describe a sinusoidal function that has a maximum at $\left(\frac{3 \pi}{2}, 3\right)$ and the nearest minimum is at $\left(\frac{9 \pi}{2},-1\right)$.

(1) $2 \cos \frac{1}{3}\left(x-\frac{3 \pi}{2}\right)+1$

$$
\text { (2) }-2 \sin \frac{1}{3}(x-3 \pi)+1
$$

$$
\begin{array}{ll}
T=6 \pi & C=\frac{3 \pi}{2}+\frac{3 \pi}{2} \\
B=\frac{1}{3} & =3 \pi
\end{array}
$$

Suggested Practice Problems: 5.2 \# 1-2 (radians), 4-9, 12-16, 18, 20, 22-24, 27, 28
Textbook Reading: Reading: Textbook page 238-248
Key Ideas page 249
Next Class: Modelling Trig Equations

