Volumes Part 1: Cross Sections and Rotations

Goal:

- Can determine the volume of solids using geometric slices
- Can derive the volume equations to pyramids and spheroids
- Can determine the volume of solids after rotation around the x or y axis

Terminology:

- None

Determine the area of the shaded region given the curve is

$$
(2 x)^{2}=\frac{y^{3}}{3}+2 y^{2}+2
$$

Consider a few differnet ways of making a vase out of this region

To find the volume of a region, we just need to add up the cross sectional areas:

$$
V=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} A\left(x_{k}\right) \Delta x=\int_{a}^{b} A(x) d x
$$

The solid lies between the planes perpendicular to the x-axis at $x=0$ and $x=4$. The cross sections perpendicular to the x-axis between these planes run between $x=y^{2}$.
a. The cross sections are circular discs with diameters in the $x y$-plane

b. The cross sections are squares with bases in the $x y$-plane

c. The cross sections are squares with diagonals in the $x y$-plane
d. The cross sections are equilateral triangles with bases in the $x y$-plane
d. The cross sections are parabolas with bases in the $x y$-plane (the height and base of the parabolas are the same)

A fun consequence is that now we can derive equations for volumes of known geometric objects
Example: Show that the volume of a cylinder and cone with radius r and height h is

$$
V_{1}=\pi r^{2} h, \quad V_{2}=\frac{1}{3} \pi r^{2} h
$$

Practice: Show that the volume of a prism with constant cross secrtional area A and height h is just

$$
V=A h
$$

Practice: Show that the volume of a square based pyramid with base side length a and height h is

$$
V=\frac{1}{3} a^{2} h
$$

We are going to finish by briefly talking about how we can generate circular cross sections and that is by simply revolving a region around an axis to generate a volume. Consider the region bound between $x=0, y=0$ and the curve $y=f(x)$ as shown below

Practice: Find the volume of the solid generated by roating the area between the x and y-axis and the curve $y=1-x^{2}$ if you were to rotate it about the x or y axis.

Practice: Consider the volume formed when the function $f(x)=\frac{1}{x}$ where $x \in[1, b]$ is rotated over the x-axis. What is the volume? What happens when $b \rightarrow \infty$?

Practice Problems: 7.3 \# 1-20, 27-38
Textbook Readings: 7.3 page 383-385
Workbook Practice: page 328-337
Next Class: Volumes using washers and shells

