1.

Let R be the region in the first quadrant bounded by the x - and y-axes, the horizontal line $y=1$, and the graph of $y=\ln x$, as shown in the figure above. What is the volume of the solid generated when region R is revolved about the y-axis?
(A) $\pi(e-1)$

(D) $2 \pi\left(e^{2}-1\right)$
2. Let R be the triangular region in the first quadrant with vertices at points $(0,0),(h, 0)$, and (h, r), where r and h are positive constants. Which of the following gives the volume of the solid generated when region R is revolved about the x-axis?

Wrap Up Volume 1

(A) $\pi \int_{0}^{r}\left(\frac{h}{r} x\right)^{2} \boldsymbol{C} x$
(B) $\pi \int_{0}^{h}\left(\frac{h}{r} x\right)^{2} d x$

(C) $\pi \int_{0}^{r}\left(\frac{r}{h} x\right)^{2} \square x$
(D) $\pi \int_{0}^{h}\left(\frac{r}{h} x\right)^{2} \square x$

$$
y=\frac{r}{n} x
$$

3. The base of a solid is the region bounded by the x-axis and the graph of $<i m g$ src="/tmp/formula_5fa16e1636dc73.34137599_1604414998.svg" style="vertical-align:middle">. For the solid, each cross section perpendicular to the x-axis is a square. What is the volume of the solid?
(A)

B
(C) 2
(D) $<$ img src="/tmp/formula_5fa16e1686a5f2.73900886_1604414998.svg" style="vertical-align:middle">
(E)
4. The region in the first quadrant bounded by the graph of $y=\sec x, x=\frac{\pi}{4}$, and the axes is rotated about the x-axis. What is the volume of the solid generated?

Wrap Up Volume 1

(A) $\frac{\pi^{2}}{4}$
(B) $\pi-1$
(c) π
(D) 2π
(E) $\frac{8 \pi}{3}$

