Graphing f from f^{\prime} and $f^{\prime \prime}$

Goal:

- Can use the first derivative to identify when the function increases and decreases
- Can use the second derivative to identify when the function is concave up and concave down
- Can graph a function to have correct extrema and concavity
- None

Recall our definitions for the continuous function $f:[a, b] \rightarrow \mathbb{R}$
(change inequality direction for decreasing, minimums, and concave down).

Increasing:

- (First Principles) If $\forall x, y \in[a, b]$ with $x<y$ we get $f(x)<f(y)$, then f is increasing on $[a, b]$
- (Calculus) If $f^{\prime}(x)>0 \forall x \in(a, b)$ then f is increasing on $[a, b]$

Maximum:

- (First Principles) If $f(c) \geq f(x) \forall x \in[a, b]$, then $x=c$ is an absolute maximum
- (First Principles) If $f(c) \geq f(x)$ for every x on some open interval around c, then $x=c$ is a local maximum
- (Calculus) If $f^{\prime}(x)>0$ when $x \in(a, c)$ and $f^{\prime}(x)<0$ when $x \in(c, b)$ then $x=c$ is a local maximum
- (Calculus) If $f^{\prime \prime}(x)<0$ when $x \in(a, b)$ and $f^{\prime}(c)=0$ for $c \in(a, b)$ then $x=c$ is a local maximum

Concavity:

- (First Principles) If $f^{\prime}(x)$ is increasing on $[a, b]$ then it is concave up on $[a, b]$
- (Calculus) If $f^{\prime \prime}(x)>0 \forall x \in(a, b)$ then f is concave up on $[a, b]$ (assuming $f^{\prime}(a)$ and $f^{\prime}(b)$ are definied)

Inflection Points:

- (Calculus) If $f^{\prime \prime}(x)$ is positive or negative when $x \in(a, c)$ and $f^{\prime \prime}(x)$ is negative or positive when $x \in(c, b)$ then $x=c$ is an inflection point. ($f^{\prime \prime}$ needs to change sign)

Practice:

- Sketch the continuous functions f
- label the max and mins and inflection points
- state the intervals f is increasing and intervals it is concave up.

1. Dotted is f^{\prime} and dashed is $f^{\prime \prime}$. Make f pass through the point $f(4)=-1$ shown below. The domain of f is \mathbb{R}

2. Dotted is f^{\prime} and dashed is $f^{\prime \prime}$. Make f pass through the point $f(0)=1$ shown below. The domain of f is $[0,6]$

3. Dotted curve is f^{\prime}. Make f pass through the point $f(0)=0$ shown below. The domain of f is $[0,5]$

4. The curve has the following properties.

$$
\begin{array}{lcc}
f(-2)=6 & f^{\prime}(-2)=0 & f^{\prime \prime}(x)>0 \text { when } x>2 \\
f(0)=5 & f^{\prime}(x)>0 \text { when }|x|>2 & f^{\prime \prime}(x)<0 \text { when } x<2 \\
f(2)=-1 & f^{\prime}(x)<0 \text { when }|x|<2 & \\
& f^{\prime}(2) \text { is undefined } &
\end{array}
$$

5.

$$
f(x)=-\frac{1}{5} x^{5}-\frac{3}{4} x^{4}+5
$$

6.

$$
f(x)=4 e^{-\frac{1}{x^{2}}}
$$

7.

$$
f(x)=\arctan x^{2}
$$

Practice Problems: 4.3: \# 31-36, 45-48
Textbook Readings: 4.3 page 201-202
Workbook Practice: page 194-197, 200-203
Next Day: Optimization

