Log Laws
Goal:

- Can derive the product law using exponent laws
- Can derive the power law and quotient law from the product law.

Terminology:

- Product Law
- Quotient Law
- Power Law
- Change of Base Law

In grade 9 and 10 you learned about the exponent laws and know that

$$
\begin{aligned}
b^{n} \cdot b^{m} & =b^{n+m} & \left(b^{n}\right)^{m} & =b^{n m} \\
\underbrace{b \cdot b \cdots b}_{n} \cdot \underbrace{b \cdot b \cdots b}_{m} & =\underbrace{b \cdot b \cdots b}_{n+m} & \underbrace{b^{n} \cdot b^{n} \cdots b^{n}}_{m} & =b^{\frac{n+\cdots+n}{m}}
\end{aligned}
$$

$$
b^{-1}=\frac{1}{b}
$$

By definition

Using function notation if $g(x)=b^{x}$ then the above laws for exponents give defining characteristics

$$
g(n) \cdot g(m)=g(n+m) \quad g(n)^{m}=g(n m) \quad g(-x)=\frac{1}{g(x)}
$$

Logarithms, being the inverse of exponential have similar laws:

Product Law: $\log _{b}(m \cdot n)=\log _{b} m+\log _{b} n$

$$
\begin{aligned}
& f(x)=\log _{b} x \\
& f(m \cdot n)=f(m)+f(n)
\end{aligned}
$$

Power Law: $\log _{b} x^{n}=n \cdot \log _{b} x$
Quotient Law: $\log _{b}\left(\frac{m}{n}\right)=\log _{b} m-\log _{b} n$ $=\log _{b} m+\log _{c} n$

Power Law Proof:

$$
\begin{aligned}
\log _{b} x^{n} & =n \cdot \log _{b} x \\
\log _{b}(\underbrace{x-x \cdots x}_{n}) & =\log _{b} x+\log _{b} x+\cdots+\log _{b} x \\
& =n \cdot \log _{b} x \text { done }
\end{aligned}
$$

Quotient Law Proof:

$$
\begin{aligned}
\log _{b}\left(\frac{m}{n}\right) & =\log _{b} m-\log _{b} n \\
\log _{b}\left(m-n^{-1}\right) & =\log _{b} m+\log _{b} n^{-1} \\
& =\log _{b} m-\log _{b} n \quad \text { done }
\end{aligned}
$$

Practice: Use log laws to simplify the following as a single log:

$$
\begin{array}{ll}
\left(\begin{array}{ll}
\left.\log _{2} 7-2 \log _{2} 3\right)+\log _{2} 6 & \ln 6^{2}-\ln 9-\ln 8 \\
\log _{2} 7-\log _{2} 9+\log _{2} 6 & \ln \left(\frac{6^{3}}{9 \cdot 8}\right)=\ln 3 \\
\log _{2}(7 / 9)+\ln 8 \\
\left(\log _{2} 6\right. & \left(\frac{7-8}{13}\right)=\log _{2}\left(\frac{14}{3}\right)
\end{array}\right. & \\
2 \log (12+3)-(\log 5+\log 4) & \\
2 \log 15-\log 20 & e^{x} \cdot 10^{y}=\cdots \\
\log 15^{2}-\log 20 & \text { NoT The same } \\
\log \left(15^{2} / 20\right)=\log \frac{45}{4} & \text { base. }
\end{array}
$$

We need to be careful about the domain when we simplify log functions:
Example: Simplify the following and state the overall domain.

$$
\begin{aligned}
f(x) & =4.5 \log _{6} x^{1}-\log _{6} x^{1 / 2} \\
& =\log _{6} x^{4.5}-\log _{6} x-5 \\
& =\log _{6}\left(x^{4.5} / x^{0.5}\right)=\log _{6} x^{4} \quad, x>0
\end{aligned}
$$

$$
\begin{aligned}
& \text { Practice: Simplify the following and state the overall domain } \\
& g(x)=\log x+2 \log \underbrace{x+1>0 \quad \log \left(\left(\frac{x+1)(x-2)}{x>2}\right)\right.}_{x>0 \quad x+1)} \\
& x>-1 \\
& g(x)=\log x+\log (x+1)^{2}-\log (x+1)(x-2) \\
& =\log \left(\frac{x(x+1)^{2}}{(x+1)(x-2)}\right)=\log \left(\frac{x(x+1)}{x-2}\right)
\end{aligned}
$$

Aside from simplifying, expanding can help us simply an expression if we can evaluate togs of the smaller pieces using:

Inverse Property: $\log _{b} b^{x}=x$ and $b^{\log _{b} x}=x$

$$
\begin{aligned}
& \log _{2}\left(2^{3} .5 .5^{1 / 2}\right) \\
& \log _{\frac{\pi^{3}}{3}}+\log _{2} 5^{1.5} \\
& \frac{3+1.5 \log _{2} 5}{3+1.5 A}
\end{aligned}
$$

$$
\begin{gathered}
\log _{2}\left(\frac{36}{5}\right)^{3} \\
\log _{2}\left(\frac{2^{2} \cdot 3^{2}}{5}\right)^{3} \\
\log _{2}\left(\frac{2^{6} \cdot 3^{6}}{5^{3}}\right) \\
\log _{2} 2^{6}+\sqrt{\log _{2} 3} 3^{6}-\log _{2} 3 \\
6+6 \log _{2} 3-3 \log _{2} 5
\end{gathered}
$$

Change of Base Law: $\log _{b} a=\frac{\log _{x} a}{\log _{x} b}=\frac{\log a}{\log b}=\frac{\ln a}{\ln b}$
Proof:

$$
\begin{aligned}
\operatorname{tog}_{b} a=b^{N} \quad & \log _{x}\left(a=b^{N}\right) \\
& \log _{x} a=\log _{x} b^{N} \\
& \log _{x} a=N \log _{x} b \\
& \frac{\log _{x} a}{\log _{x} b}=N=\log _{b} a
\end{aligned}
$$

Practice: Transform the following functions to the common log and the natural log.

$$
\begin{aligned}
& f(x)=\log _{3} x \\
& f(8) ? ? \\
& \log _{3} x=\frac{\log x}{\log 3}=\frac{\ln x}{\ln 3} \\
& = \\
& =211 \log x \\
& =0.9 \ln x \\
& f(8)=2.1 \log 8 \\
&
\end{aligned}=0.9 \ln 8 .
$$

$$
g(x)=-2 \log _{100} x
$$

$$
f(x)=\log _{2} x
$$

$$
=\frac{\log x}{\log 2}=\frac{1}{\log 2} \cdot \log x
$$

$$
\begin{aligned}
& =\frac{\log x}{\log 2}= \\
& \\
& e^{3}(x-1)+2
\end{aligned}
$$

$$
\begin{aligned}
& h(x)=\log _{e^{3}}(x-1)+2 \\
& \frac{\log (x-1)}{\log e^{3}}+2=0.77 \log (x-1)+2 \\
& \frac{\ln (x-1)}{\left.\ln e^{3}\right)}+2=\frac{1}{3} \ln (x-1)+2
\end{aligned}
$$

$$
\begin{aligned}
& k(x)=\log _{10^{n} x} \\
& \frac{\log x}{\log 10^{n}}=\frac{\log x}{n} \\
& \frac{\ln x}{\ln 10^{n}}=\frac{\ln x}{n \cdot 2.3}=\frac{0.43}{n} \ln x
\end{aligned}
$$

Example: There are a lot of ways to measure earthquake sizes, but the most common measure is the Moment Magnitude which describes the amount of energy released according to the formula:

$$
M=\frac{2}{3} \log E+1.22
$$

Where E is the energy released as kg of TNT.
a. The 2011 earthquake in Japan had a moment magnitude of 9.1. Compare that to the earthquake in Vancouver in 2015 which had a magnitude of 4.8 . How much stronger was the earthquake in Japan?
b. If the magnitude increases by 1 how much will the energy increase by?

Suggested Practice Problems: 8.3 page 400-403 \# 1-3, 5, 6, 8-13, 17-20, C1
Textbook Reading: 8.3 page 392-399
Key Ideas on page 400
Next Class: Practice solving and modelling log and exponential equations

