Solving Trig Equations
Goal:

- Can solve trig equations graphically and algebraically.

Terminology:

- None

In addition to using algebra to solve trig equations, we can graph the trig equations and look for approximate (or accurate solutions using technology) solutions in the intersections.

Example: Determine the general solution to the following equation:

Practice: Find the general solution to the following

$$
3 \cos \theta=-2
$$

$$
\cos \theta=\frac{-2}{3}
$$

$$
\theta=\arccos (-2 / 3)
$$

$$
\begin{array}{r}
=2.3, \pi+0.84, \\
3.98,+2 \pi n
\end{array}
$$

$$
\theta_{1}=2.3+2 \pi n
$$

$$
\theta_{2}=3.98+2 \pi n
$$

Practice: Find the general solution to the following

$$
\sin \theta=\frac{ \pm \sqrt{3}}{2}
$$

$$
\begin{array}{r}
\theta=\frac{\pi}{3}, \frac{2 \pi}{3}, \frac{4 \pi}{3}, \frac{5 \pi}{3} \\
+2 \pi n
\end{array}
$$

Practice: Find the general solution to the following

$$
\cos \left(\frac{1}{2}\left(\theta-\frac{\pi}{3}\right)\right)=\frac{1}{2}
$$

Practice: Find the general solution to the following

$$
J=\frac{2 \pi}{\pi / 3}=6
$$

$\theta \sim-0.5,2$

$$
-\sec \left(\frac{\pi}{3}(\theta+2)\right)=2
$$

$$
\Rightarrow \cos \left(\frac{\pi}{3}(\theta+2)=-\frac{1}{2}\right.
$$

$$
\frac{\pi}{3}(\theta+2)=\frac{2 \pi}{3}, \frac{4 \pi}{3}+2 \pi n
$$

$$
\theta+2=2,4+6 n
$$

$$
\theta=0,2+6 n
$$

$$
\theta_{1}=6 n \quad, n \in T
$$

$$
\theta_{2}=2+6 n
$$

Practice: Find the general solution to the following

$$
T=\frac{2 \pi}{\pi / 10}=20
$$

$$
\begin{array}{r}
\cos \theta \cdot \sin ^{2}\left(\frac{\pi}{10}(\theta-3)\right)=\cos \theta \quad \& \cos \theta= \\
\sin ^{2}\left(\frac{\pi}{10}(\theta-3)\right)=1
\end{array}
$$

$$
\begin{aligned}
& \sin \left(\frac{\pi}{10}(\theta-3)\right)= \pm 1 \\
& \frac{\pi}{10}(\theta-3)=\frac{\pi}{2}+\pi n \quad n \in Z \\
& \theta-3=5+10 n \\
& \theta=8+10 n, n \in Z
\end{aligned}
$$

Trig Functions
Practice: Find the general solution to the following

$$
T=\frac{2 \pi}{\pi / 7}=14 \quad \csc \left(\frac{\pi}{7}(\theta+1)\right)=-3
$$

Practice: Find the general solution to the following

$$
\begin{aligned}
& T=\frac{2 \pi}{1 / 5}=10 \pi \quad \quad 4 \cos ^{2}\left(\frac{1}{5}(\theta-2)\right)=\frac{1}{3} \\
& 4 \cos ^{2}\left(\frac{1}{5}(\theta-2)\right)=\frac{1}{3} \\
& \cos \left(\frac{1}{5}(\theta-2)\right)= \pm \frac{1}{\sqrt{3}} \\
& \xlongequal{\sqrt{3}} \\
& \frac{1}{5}(\theta-2)=0.96,2.19,4.10,5.32 \\
& +2 \pi n \\
& \theta-2=4.8,10.95,20.5,26.6+10 \pi n \\
& \begin{array}{r}
\theta=6.8,120,22.5,28.6 \\
+10 \mathrm{mn}
\end{array}
\end{aligned}
$$

Suggested Practice Problems: 5.4 \# 4, 5, 8, 11, 15-23
Textbook Reading: page 266-273
Key Ideas page 274
Next Class: Modelling Trig Functions

