Inverses as Reverse Mappings

Goal:

- Given a relation f, understand that the backwards relation is the same connection, but a different order.
- Can explain why inverses are reflections over the line $y=x$.
- Can determine an equation for the inverse of a function and can restrict the domain so the inverse is a function.

Terminology:

- Inverse
- One-to-one

When we look at the relationship a function f makes we know it takes a domain set to a range set

$$
\begin{gathered}
f: X \rightarrow Y \\
x \mapsto y \\
(x, y)
\end{gathered}
$$

What we are interested in is the reverse relationship

$$
\begin{gathered}
f^{*}: Y \rightarrow X \\
y \mapsto x \\
(y, x)
\end{gathered}
$$

If we start with a function f, we can sketch the image of the inverse relation

Example: Graph the inverse relation from the graph of f below

Practice: Graph the inverse relations of the following relations. What do you notice about orientation of the inverse image?

If the function was one-to-one to begin with, then the inverse relation will be a function.

To determine the equation of a function, $y=f(x)$, we want our output to be x and the input to be y. In other words, we want to solve for x in the function $y=f(x)$.

Example: For the above function $f(x)=2 x-3$ we want to solve for x.

Example: If g is one-to-one then find the inverse of $f(x)=2 g(x-3)+2$

Practice: Find the equation of the inverse of the following functions

$$
f(x)=\frac{x-1}{3}
$$

$$
f(x)=\frac{1}{4} x^{3}+3
$$

$f(x)=\frac{3}{2 x-4}+1$

$$
f(x)=\frac{g(0.5 x)-1}{2}
$$

Example: If the function is not one-to-one, we need to make an adjustment to the domain.

$$
f(x)=\left(\frac{x-2}{2}\right)^{2}+1
$$

Practice: Find the inverse of the following function and restrict the domain so the inverse will be a function.

$$
f(x)=-2(x+3)^{2}-4
$$

$$
f(x)=(3 x-6)^{4}+2
$$

Suggested Practice Problems: 1.4 page 51-55 \# 1, 2, 4, 5, 9, 10, 12, 14, 15, 19-21, C1, C2
Textbook Reading: 1.3 page 46-50
Key Ideas on page 51
Next Class: Exponential function

