Volumes Part 2: Washers and Shells

Goal:

- Can determine the volume of solids after rotation around any line.
- Can use washers and discs to find the volume of a shape.
- Can determine the volume of solids after rotation using shells

Terminology:

- None

Volume using washers:

The region bound between the two one-to-one functions $y=f(x)$ and $y=g(x)$ is rotated around
a. The line $x=a$
b. The line $y=b$

Write the expression for the volume formed.The curves intersect at the origin and the point $\left(x_{0}, y_{0}\right)$ and $\forall x \in\left(0, x_{0}\right)$

Practice: The region bound between the curves $y=x$ and $y=x^{4}$ is rotated about the line $x=2$ and $y=-1$. What are the volumes?

Practice: Determine the volume of the shape made by rotating the region bound between $y=\sqrt{x}$ and $y=x-2$ and the y-axis after rotating it around the line $x=-1$ and $y=3$

Volume using Shells:

Given a region bound between the function $y=f(x)$ (not 1-to-1) and the x-axis on the interval $x \in[a, b]$ and rotated around the y-axis, define a Riemann sum using cylinders whose limit is the desired volume.

Practice: Determine the volume formed when the region bound between the curve $y=x^{2}-2 x$ and the x-axis on the interval $x \in[0,2]$ is rotated about the y-axis

Take the same area and rotate it about the line $x=-1$ instead. What is the new volume?

Practice: Determine the volume made when the region enclosed between $y=\sin ^{2} x^{2} \cdot \cos x^{2}$ and the x-axis on the interval $x \in\left[0, \sqrt{\frac{\pi}{2}}\right]$ after being rotated about the y-axis.

