Solving Exponents and Logarithms Algebraically

Goal:

- Can solve equations involving logs using algebra and remember to respect the domain of log functions.
- Can model problems using the natural log thinking of the relationship to the exponential function

Terminology:

• Extraneous Solutions

When solving log equations, we need to remember to respect the domain of the original expression

Example: Solve for *x*

 $-3 + \log_2 x = -\log_4 (x+1)^2$

Practice: Solve for *x*

$$\log_3((x+3)(x-4)) = 6\log_{27}(x+3) + 1$$

Exponential Growth

We want to practice modelling exponential and log equations and solving by changing our bases to 10 and *e*.

Practice: The population of the Greater Vancouver Area last year (2019) was 2.5 million. It is expected to grow at an annual rate of 0.95% for the next few decades. Write a function for the population at year t using e as the base.

1= 1.0095 T=1 Base (4)= 1.0075t P(t)= 25 (1.0095 + 2019) 1.00 95 = e k= ln 1.0075 = 25 e. (t-2019)

Write the equation to the inverse that outputs the year given the current population.

 $P = 2.5 e^{k(t-wig)} \rightarrow t(P) = \frac{1}{k} ln(\frac{P}{2.5}) + 2019$ solve for t $\frac{P}{2.5} = e^{k(t-2019)}$ $\ln\left(\frac{e}{2.5}\right) = k(t-2015)$

Determine the year the population of Vancouver will reach 4 million. Determine the year when then population of Vancouver was 1 million. $\mathcal{M} = \mathcal{I}_{\mathcal{N}} \left(1.0095 \right)$

$$\begin{aligned} \xi(4) &= \frac{1}{k} \ln \left(\frac{4}{2.5} \right) + 2019 \\ &= 2069 \\ \xi(1) &= \frac{1}{k} \ln \left(\frac{1}{2.5} \right) + 2015 \\ &= 1922 \end{aligned}$$

Practice: The average life span of Canadian women has grown logarithmically over the past century. Rather than make a log equation to start, we are going to make an exponential equation for the inverse relationship.

Re-write your equation in base *e*.

5 100

$$\frac{1}{4} = e^{k} \implies k = \ln\left(\frac{1}{4}\right)$$
$$\gamma(l) = 40 e^{\frac{k}{14}(l-70)} + 1900$$

Determine the logarithmic equation L(y) that determines the life expectancy at year y

Solve for
$$l$$

$$\frac{Y - 1900}{40} = e^{\frac{14}{14}(l - 70)}$$

$$L(l)$$

$$L(l)$$

$$L(l)$$

$$L(l)$$

$$L(l) = \frac{14}{16} ln \left(\frac{y - 1900}{40}\right) + \frac{1}{10}$$

$$\frac{cm}{18} \frac{determine}{expectency} in 2060$$

$$L(2060) = \frac{14}{K} ln(\frac{2060 - 1900}{40} + 70)$$

$$= 89.2 years$$

.

Practice: As temperature increases the amount of sugar that can be dissolved in 100mL of water increases exponentially (the solubility changes). At 20°C you can dissolve 200g and every 1°C the temperature increases we can dissolve 1.15% more.

Determine an exponential equation using *e* to model how much is dissolved at a given temperature. Determine how much is dissolved at 50°C

$$M_{150}^{(10)} = 200 \left(e^{k (50-20)} \right) = 28 1.8 g$$

Determine a natural logarithm equation for the temperature of the water given the amount dissolved. Determine what temperature is needed to dissolve 400g of sugar.

solve for t

$$M = 200 (e^{n(t-20)})$$

 $\frac{m}{200} = e^{k(t-20)}$
 $ln (\frac{m}{200}) = k(t-20)$
 $ln (\frac{m}{200}) = k(t-20)$
 $= t(m) = k ln (\frac{m}{200}) + 20$
 $t(400) = k ln (\frac{400}{200}) + 20 = 80.6°C$

Practice: Athletic performance typically will follow a logarithmic growth where early growth occurs quickly and it becomes harder to progress as you improve.

Re-write your equation in base *e*.

$$A(w) = 2 \cdot e^{\frac{w}{100}(w - 265)} + 23$$
, $k = \ln 2.5$

Determine the logarithmic equation W(a) that determines the max weight lifted at age a.

solve for w	(a-23)
$a = 2 - e^{00} + 23$	$\int \mathcal{W}(a) = \frac{1}{k} \ln(2)$
V (W-265)	+265
$\alpha - 23 = e^{100}$	
2	/ chech (28) = 365 1bs
$ln\left(\frac{\alpha-13}{2}\right)=\frac{k}{100}(w-1.5)$	

Suggested Practice Problems: 8.4 page 412 – 415 # 1, 2, 5, 8-12, 15-17, 21
Textbook Reading: 8.4 page 404-411
Key Ideas on page 412
Next Class: Review