Solving Exponents and Logarithms Algebraically

Goal:

- Can solve equations involving logs using algebra and remember to respect the domain of log functions.
- Can model problems using the natural log thinking of the relationship to the exponential function Terminology:
- Extraneous Solutions

When solving log equations, we need to remember to respect the domain of the original expression

Example: Solve for x

$$
-3+\log _{2} x=-\log _{4}(x+1)^{2}
$$

Practice: Solve for x

$$
\log _{3}((x+3)(x-4))=6 \log _{27}(x+3)+1
$$

We want to practice modelling exponential and log equations and solving by changing our bases to 10 and e.

Practice: The population of the Greater Vancouver Area last year (2019) was 2.5 million. It is expected to grow at an annual rate of 0.95% for the next few decades. Write a function for the population at year t using e as the base.

$$
r=1.0095 \quad T=1 \quad \text { Bose } f(t)=1.0095^{t}
$$

$$
\begin{aligned}
P(t) & =2.5\left(1.0095^{t-2019}\right) & & 1.0095=e^{\alpha} \\
& =2.5 e^{k(t-2019)} & & k=\ln 1.0095
\end{aligned}
$$

Write the equation to the inverse that outputs the year given the current population.

$$
\begin{aligned}
P & =2.5 e^{u(t-2019)} \quad \Rightarrow t(P)=\frac{1}{k} \ln \left(\frac{\rho}{2.5}\right)+2019 \\
\frac{P}{2.5} & =e^{u(t-20.9)} \\
\ln \left(\frac{e}{2.5}\right) & =k(t-1019)
\end{aligned}
$$

Determine the year the population of Vancouver will reach 4 million. Determine the year when then population of Vancouver was 1 million.

$$
\begin{aligned}
t(4) & =\frac{1}{k} \ln \left(\frac{4}{2.0}\right)+2019 \\
& =2069 \\
t(1) & =\frac{1}{n} \ln \left(\frac{1}{2.5}\right)+2019 \\
& =1922
\end{aligned}
$$

Practice: The average life span of Canadian women has grown logarithmically over the past century. Rather than make a log equation to start, we are going to make an exponential equation for the inverse relationship.

Find an expression $Y(\ell)$ that gives you the year Y when the life expectancy is ℓ if the following are true

- $Y(70)=1940$
- $Y(84)=2010$
- The horizontal asymptote is 1900

Re-write your equation in base e.

$$
\begin{aligned}
& \frac{11}{4}=e^{\alpha} \Rightarrow k=\ln \left(\frac{11}{4}\right) \\
& y(l)=40 e^{\frac{k}{14}(e-70)}+1900
\end{aligned}
$$

Determine the logarithmic equation $L(y)$ that determines the life expectancy at year y

$$
\begin{aligned}
& \begin{array}{l}
\text { Solve for } \ell \\
\qquad \frac{y-1900}{40}=e^{\frac{6}{14}(l-70)}
\end{array} \\
& \ln \left(\frac{y-1900}{40}\right)=\frac{k}{14}(l-70) \\
& \Rightarrow L(y)=\frac{14}{k} \ln \left(\frac{y-1900}{40}\right)+70 \\
& \text { can determine } \\
& \text { iss expectercy in } 2060 \\
& L(2060)=\frac{14}{k} \ln \left(\frac{2060-1909}{40}\right) \\
& +70 \\
& =89.2 \text { years }
\end{aligned}
$$

Practice: As temperature increases the amount of sugar that can be dissolved in 100 mL of water increases exponentially (the solubility changes). At $20^{\circ} \mathrm{C}$ you can dissolve 200 g and every $1^{\circ} \mathrm{C}$ the temperature increases we can dissolve 1.15% more.

Determine an exponential equation using e to model how much is dissolved at a given temperature. Determine how much is dissolved at $50^{\circ} \mathrm{C}$

$$
\begin{aligned}
& \begin{array}{ll}
\text { majbsnit } \\
(200,200)
\end{array} \quad r=1.0115 \quad T=1{ }^{\circ} \mathrm{C} \\
& \text { Basic: }(1.0115)^{t}, t \text { istenp }{ }^{\circ} \mathrm{C} \\
& M(50)=200\left(e^{k(50-20)}\right)=281.8 \mathrm{~g}
\end{aligned}
$$

Determine a natural logarithm equation for the temperature of the water given the amount dissolved.
Determine what temperature is needed to dissolve 400 g of sugar.

$$
\begin{aligned}
& \text { Solve for } t \\
& m=200\left(e^{k(t-20)}\right) \\
& \frac{m}{200}=e^{k(t-20)} \\
& \ln \left(\frac{m}{200}\right)=k(t-20) \\
& \Rightarrow t(m)=\frac{1}{k} \ln \left(\frac{m}{200}\right)+20 \\
& t(400)=\frac{1}{k} \ln \left(\frac{400}{200}\right)+20=80.6^{\circ} \mathrm{C}
\end{aligned}
$$

Practice: Athletic performance typically will follow a logarithmic growth where early growth occurs quickly and it becomes harder to progress as you improve.

Again, to determine the log equation we will consider the inverse relationship of $A(w)$ that determine the person's age given the maximum they can deadlift (a type of exercise). Consider the following

- $A(265)=25$
- $A(365)=28$
- The horizontal asymptote is 23

Re-write your equation in base e.

$$
A(\omega)=2 \cdot e^{\frac{\alpha}{100}(\omega-265)}+23, k=\ln 2.5
$$

Determine the logarithmic equation $W(a)$ that determines the max weight lifted at age a.

$$
\begin{aligned}
& \text { Solve for } w \\
& a=2 \cdot e^{\frac{k}{100}(w-265)}+23 \\
& \frac{a-23}{2}=e^{\frac{k}{100}(w-265)} \\
& \ln \left(\frac{a-23}{2}\right)=\frac{k}{100}(w-265)
\end{aligned} \quad\left[\begin{array}{r}
w(a)=\frac{100}{k} \ln \left(\frac{a-23}{2}\right) \\
+265
\end{array} \quad \begin{array}{l}
\text { check } w(28)=365165
\end{array}\right.
$$

Suggested Practice Problems: 8.4 page $412-415$ \# 1, 2, 5, 8-12, 15-17, 21
Textbook Reading: 8.4 page 404-411
Key Ideas on page 412

