Linearization

Goal:

- Understands linearization is just the tangent line at a point.
- Understands that linearization "formula" is just point-slope form of tangent line.

Terminology:

- Linearization

Our goal today is to approximate functions using polynomials and use our approximations to help analyze the curve.
Consider the general curve of $y=f(x)$ below

If we were to approximate $f(x)$ with a polynomial, $p(x)$, at the point $x=a$, what characteristics would you like p to have?

$$
p(a)=f(a)
$$

$p^{\prime}(a)=f^{\prime}(a)$

$$
\cdots p^{(n)}(a)=f^{(n)}(a)
$$

$$
p^{\prime}(a)=f^{\prime \prime}(a)
$$

This is the process of Linearization and if we were to continue it would generate a Taylor Series of order n (degree of the polynomial)

$$
\begin{aligned}
& f(x) \approx f(a)+f^{\prime}(a)(x-a)+f^{\prime \prime}(a) \frac{(x-a)^{2}}{2}+\frac{f^{\prime \prime \prime}(a)(x-a)^{3}}{3!}+\ldots v \\
& y=y_{0}+m\left(x-x_{0}\right)=L(x)
\end{aligned}
$$

Linearization (and Taylor series) are useful when we are okay with a little error around the point $x=a$.

Practice: Find the linearization of $\cos x$ around $x=\frac{\pi}{3} \rightarrow$ find a line that looks

$$
\begin{array}{ll}
f(x)=\cos x \\
f^{\prime}(x) & =-\sin x \\
f^{\prime}\left(\frac{\pi}{3}\right)=-\frac{\sqrt{3}}{2}
\end{array} \quad \begin{aligned}
& \text { line } \cos x
\end{aligned} \quad \begin{aligned}
& 1
\end{aligned}
$$

Use the linearization to estimate $\cos \left(\frac{\pi}{3}+0.02\right)$

$$
L\left(\frac{\pi}{3}+0.02\right)=-\frac{\sqrt{3}}{2}(0.02)+\frac{1}{2}=0.4826 \ldots
$$

Is this an over-estimation or under-estimation?

concave up
underestimate
Use a calculator to check the actual value of $\cos \left(\frac{\pi}{3}+0.02\right)$
$0.48258 \ldots$

Practice: Consider the relation
Practice: Consider the relation
Linearize the relation around the point $\left(1,-\frac{d}{d x}\left(x^{2}-x y+y^{3}=1\right)\right.$

$$
\begin{array}{ll}
& 2 x-y-x y^{\prime}+3 y^{2} y^{\prime}=0 \\
x=1 \\
y=-1 & \Rightarrow \\
L(x)= & 2+1-y^{\prime}+3 y^{\prime}=0 \\
&
\end{array}
$$

Use the linearization to estimate the solution to

$$
1.1^{2}-1.1 y+y^{3}=1
$$

$$
L(1.1)=\frac{-3}{2}(0.1)-1=-1.15
$$

Are you over-estimating or under-estimating?

$$
\begin{aligned}
& \frac{d}{d t}\left(2 x-y-x y^{\prime}+3 y^{2} y^{\prime}\right)=0 \\
& \quad 2-y^{\prime}-y^{\prime}-x y^{\prime \prime}+6 y\left(y^{\prime}\right)^{2}+3 y^{2} y^{\prime \prime}=0 \\
& 2+3-y^{\prime \prime}-\frac{3}{b}\left(\frac{9}{4} 2\right)+3 y^{\prime \prime}=0
\end{aligned}
$$

Practice: If $f^{\prime}(x)=\frac{\sqrt{x}}{x^{3}+1}$ and $f(1)=2$, estimate $f(1.1)$. Is this an over-estimation or underestimation?

$$
\begin{aligned}
& L(x)=\frac{1}{2}(x-1)+2 \quad L(1.1)=2.05 \\
& f^{\prime \prime}(x)=\frac{\frac{1}{2 \sqrt{x}}\left(x^{3}+1\right)-3 x^{2} \sqrt{x}}{\left(x^{3}+1\right)^{2}} \\
& f^{\prime \prime}(1)=\frac{1-3}{4}<0 \Rightarrow \text { overestimate }
\end{aligned}
$$

Practice Problems: 4.5: \# 1-14

Related Rates (Preview)

Example: Consider a paper cone with height 10 cm and radius 2 cm that is full of water. A hole appears in the bottom and water begins to leave at a rate of $0.5 \mathrm{~cm}^{3} / \mathrm{s}$. How fast is the height of water changing after 10 seconds?

Example: In New York on New Year's Eve, a giant ball of light will drop down a flag pole as people watch. The pole is 80 feet tall and you are 100 feet from the base of the flagpole. Assume your height is 6 feet. If the ball is dropping at rate of 1.3 feet $/ \mathrm{sec}$, how fast is the length of your shadow growing when the light is midway down the pole?

