Trig Identities
Goal:

- Can prove $\cos ^{2} x+\sin ^{2} x=1$ using Pythagoras and can derive the other two identities from this one.
- Understands that changing all trig terms to sine and cosine is the first step to simplifying identities.
- Understands how the addition and subtraction identities are derived. Can use the identities to simplify trig statements.
New terminology:
- Statement
- Identity

Use the unit circle to show that $\sin \theta=y$ and $\cos \theta=x$.

$$
\cos \theta=\frac{x}{1}=x \quad \sin \theta=\frac{y}{1}=y
$$

$$
x^{2}+y^{2}=1
$$

$$
\cos ^{2} \theta+\sin ^{2} \theta=1
$$

Pythagovan Trig ldritity.

The above statement is called an identity - something that is fundamentally true and can be used to support other statements. In mathematics, a statement is something that is true or false.

$\cos ^{2} \theta=1-\sin ^{2} \theta$	$\sin \theta=1-\cos ^{2} \theta$
$\cos \theta= \pm \sqrt{1-\sin ^{2} \theta}$	
$\frac{\cos ^{2} \theta}{\cos ^{2} \theta}+\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \frac{1}{\cos ^{2} \theta}$	$\frac{\cos ^{2} \theta+\frac{\sin ^{2} \theta}{\sin ^{2} \theta}=\frac{1}{\sin ^{2} \theta}}{}$$1+\tan ^{2} \theta=\sec ^{2} \theta$ $\cot ^{2} \theta+1$

Example: Prove or provide a counterexample to the following statements. If true, then show it.

Practice: Prove or provide a counterexample to the following statement. If true, then show it.

$$
\begin{aligned}
& \csc x-\sin x=\cot x \\
& \frac{1}{\sin 1}-\sin 1=0.34 \\
& \cot 1=0.64 \\
& \text { FALSE }
\end{aligned}
$$

$$
\begin{aligned}
& \tan ^{2} x \cdot \sin ^{2} x=\tan ^{2} x-\sin ^{2} x \\
& \tan ^{2} x\left(1-\cos ^{2} x\right)=\tan ^{2} x-1+\cos ^{2} x \\
& \tan ^{2} x-\sin ^{2} x=\tan ^{2} x-1+\cos ^{2} x \\
&-\sin ^{2} x=-1+\cos ^{2} x \\
&+\cos ^{2} x+\sin ^{2} x=+1
\end{aligned}
$$

True

$$
\begin{aligned}
& \sin x=x-\frac{x^{3}}{6} \\
& \begin{aligned}
\sec x-\sec x \sin ^{2} x & =\cos x \\
\frac{1}{\cos 1}-\frac{1}{\cos 1} \cdot \sin ^{2} 1 & =0.540 \ldots \\
\cos 1 & =0.540 \ldots
\end{aligned} \\
& \sin 1=0.841 \ldots \\
& 1-\frac{1}{6}=0.833 \ldots \\
& \text { false } \\
& \begin{aligned}
\sec x & -\sec x \sin ^{2} x \\
& =\sec x-\sec x\left(1-\cos ^{2} x\right)
\end{aligned} \\
& =\sec x-\sec x+\frac{\cos ^{2} x}{\cos x} \\
& =\cos x \\
& \text { TRUE }
\end{aligned}
$$

Trig Identities

Aside from the Pythagorean Identity, we will look at one other important identity: Angle Addition Identity.

We want to manipulate the above image so we know the following:

Trig Identities
Practice: Determine the exact value of $\cos \left(\frac{7 \pi}{12}\right)$

$$
\cos \left(\frac{7 \pi}{3}-\frac{7 \pi}{4}\right)=\cos \left(\frac{7 \pi}{3}\right) \cos \left(\frac{7 \pi}{4}\right)+\sin \left(\frac{7 \pi}{3}\right) \sin \left(\frac{7 \pi}{4}\right)
$$

$$
\begin{aligned}
& =\frac{1}{2}-\frac{1}{\sqrt{2}}+\frac{\sqrt{3}}{2}\left(-\frac{1}{\sqrt{2}}\right) \\
& =\frac{1-\sqrt{3}}{2 \sqrt{2}} \quad \frac{7 \pi}{12}=\frac{\pi}{3}+\frac{\pi}{4}
\end{aligned}
$$

Example: Simplify the following into a single sinusoidal equation
$r \cos A \cdot \sin x+r \sin A \cdot \cos x$

Example: Determine an equation for $2 \sin x-\cos x$

Practice: Determine an equation for $-3 \sin x+4 \cos x$
$\cos (A+B)=\cos A \cos B-\sin A \sin B$ $\sin (A+B)=\sin A \cos B+\cos A \sin B$

From the sum of angle identities, we get a set of important identities called double angle identities

$\sin 2 A=\sin A \cos A$

$\sin 2 A=2 \sin A \cos A$

$$
\cos ^{2} A=
$$

$$
\sin ^{2} A=
$$

