Related Rates

Goal:

- Can create an equation to model problems based in geometry - Pythagoras, trig, surface area and volume.
- Can differentiate an equation and relate how the rates depend on each other and make a new differential equation.
Terminology:
- Related Rate

Distances
Example: At 1:00 pm ship A was 80 km south of ship B. Ship A is sailing north at $30 \mathrm{~km} / \mathrm{h}$ and ship B is sailing east 40 km / h. How fast is the distance between them changing at 3:00 pm?

$$
\begin{aligned}
& \frac{d}{d t}\left(\delta^{2}=x^{2}+y^{2}\right) \\
& \neq d \frac{d \delta}{d t}=4 x \frac{d x}{d t}+2 / y \frac{d y}{d t} \\
& \left.\frac{d \delta}{d t}\right|_{\substack{x=80 \\
y=-20 \\
\partial=82.5}}=\frac{80(80)+30(-20)}{82.5} \\
& =31.5 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

Example: A baseball diamond has 4 bases that make a diamond with edge lengths of 60 feet. There is a runner on first when the batter hits a fair ball. The batter runs to first at 15 feet/sec and the runner on first runs to second at 12 feet/sec. How fast is the distance between the batter and runner changing after 2 seconds when the runner is 30 feet from first?

$$
\begin{aligned}
\delta^{2} & =r^{2}+b^{2} \quad \frac{d b}{d t}=-15 \quad \frac{d r}{d t}=12 \\
2 \delta \frac{d \delta}{d t} & =7 r \frac{d r}{d t}+4 b \frac{d b}{d t} \\
\left.\frac{d \delta}{d t}\right|_{t=} & =\frac{24(12)+30(-15)}{38.4} \\
& =-4.2 \mathrm{ft} 1 \mathrm{sec}
\end{aligned}
$$

Angles

Example: A lighthouse is on an island 1 km from the shoreline. The light makes 1 revolution every 4 seconds. How fast is the lightbeam travelling across the shoreline when the angle the lightbeam makes with the shore is $\frac{\pi}{6}$ radians?

$$
\frac{d \theta}{d t}=\frac{2 \pi}{4} \mathrm{rad} / \mathrm{scc} \quad \tan \theta=l
$$

$$
\begin{aligned}
\left.\frac{d l}{d t}\right|_{\theta=\frac{\pi}{3}} & =\sec ^{2}\left(\frac{\pi}{3}\right)\left(\frac{\pi}{2}\right) \\
& =4\left(\frac{\pi}{2}\right)=2 \pi \mathrm{~km} / \mathrm{sec}
\end{aligned}
$$

Example: A clock's minute hand is 10 cm and the hour hand is 6 cm . If the angle between them is decreasing at a rate of $0.1 \mathrm{rad} /$ minute how fast is the distance between the tip of each hand decreasing when the angle is $\frac{\pi}{3}$ radians?

$$
\frac{d \theta}{d t}=-0.1 \mathrm{rad} / \mathrm{min}
$$

$$
\begin{aligned}
& \delta^{2}=m^{2}+h^{2}-2 m h \cos \theta \quad \delta=8.7 \\
& \psi \delta \frac{d \delta}{d t}=2 m h \sin \theta \frac{d \theta}{d t} \\
& \left.\frac{d \delta}{d t}\right|_{\theta=\frac{\pi}{3}}=\frac{60 \sin \left(\frac{\pi}{3}\right)(0.1)}{8.7}=0.6 \mathrm{~cm} / \mathrm{min}
\end{aligned}
$$

Shadows:

Example: A person who is 1.5 m tall walks toward a lightpost that is 8 m tall at a constant speed of $2 \mathrm{~m} / \mathrm{s}$. How fast is the length and tip of the persons shadow moving when the person is 4 m from lightpost?

$$
\frac{d x}{d t}=-2
$$

$$
\begin{gathered}
\frac{x}{6.5}=\frac{s}{1.5}=\frac{x+s}{8} \\
1-5 x=6.5 \mathrm{~s} \\
1-5 \frac{d x}{d t}=6.5 \frac{d s}{d t} \\
\frac{d s}{d t}=-0.46 \mathrm{~m} / \mathrm{s} \quad \text { (Shadow length) } \\
\frac{d s}{d t}+\frac{d x}{d t}=-2.96 \mathrm{~m} / \mathrm{s} \quad \text { (shadow tip) }
\end{gathered}
$$

Example: A candle is placed a distance 20 cm from a thin block of wood of height 30 cm . The block is a distance 15 cm from a wall. The candle burns down so that the height of the flame, h, decreases at the rate of $4 \mathrm{~cm} / \mathrm{hr}$. Find the rate at which the length of the shadow cast by the block on the wall increases.

L is shadow length.

$$
\frac{d l}{d t}=7 \mathrm{~cm} / \mathrm{h}
$$

Geometric Volumes:

Example: Sand is poured onto a surface at $15 \mathrm{~cm}^{3} / \mathrm{sec}$, forming a conical pile whose base diameter is always equal to its altitude. How fast is the altitude of the pile increasing when the pile is 3 cm high?

$$
\frac{d U}{d t}=\left.\frac{\pi h^{2}}{4} \frac{d h}{d t} \Rightarrow \frac{d h}{d t}\right|_{h=3}=2.12 \mathrm{~cm} / \mathrm{sec}
$$

Example: Two balloons are connected so the total volume is constant, but that air can travel between them. Determine how fast the radius of the smaller balloon is changing if the larger balloon's radius is shrinking $3 \mathrm{~cm} / \mathrm{sec}$ at the moment the larger radius is two times the size of the smaller radius.

$$
\frac{d R}{d t}=-3 \mathrm{~cm} /\left.\mathrm{sec} \quad \frac{d r}{d t}\right|_{R=2 r}=?
$$

$$
\frac{d V}{d t}=0=\frac{4 \pi}{3}\left(3 r^{2} \frac{d r}{d t}+3 R^{2} \frac{d R}{d t}\right)
$$

$$
\Rightarrow \frac{d r}{d t}=\left.\frac{-r^{2}}{r^{2}} \frac{d R}{d t} \Rightarrow \frac{d r}{d t}\right|_{R=2 r}=12 \mathrm{~cm} / \mathrm{sec} .
$$

Practice Problems: 4.6: \# 8, 10-22, 24, 29-36
Textbook Readings: 4.6 page 232-236
Workbook Practice: page 221-229
Next Day: L'Hopital and Motion

