Accumulation Function Practice

1. The graph of the function f shown on the right consists of a semicircle and three line segments. Let g be the function given by

$$
g(x)=\int_{-3}^{x} f(t) d t-2
$$

a. Find $g(0)$ and $g^{\prime}(0)$.

$$
\begin{aligned}
& g(0)=\int_{-3}^{0} f d t-2=(3)\left(\frac{3}{2}\right)-2=2.5 \\
& g^{\prime}(x)=f(x) \rightarrow g^{\prime}(0)=f(0)=1
\end{aligned}
$$

b. Find all values of x in the open interval $(-5,4)$ at which g attains a local extremum. Justify your answer.

$$
g^{\prime}(x) \text { charges son n won } f(x) \text { changes syn }
$$

c $x=-4$ local min (- re to we)
e $x=3$ local max (tore to - re)
c. Find the absolute maximum and minimum value of g on the closed interval $[-5,4]$. Justify your

$$
\begin{aligned}
& g(3)=\int_{-3}^{3} f d t-2=5+2-\frac{\pi}{2}-2 \approx 3.43 \text { abs max } \\
& g(-4)=\int_{-3}^{-4} f d t-2=-1-2=-3 \text { abs min } \\
& g(4)<g(3) \text { and } g(-5)>g(-4)
\end{aligned}
$$

d. Find all values of x in the open interval $(-5,4)$. At which the graph of g has a point of inflection.

$$
g^{\prime \prime}(x)=f^{\prime}(x) \text { chase sign e } x=-3,1,2
$$

e. Use technology to graph g
2. The graph of the function f shown to the right consists of six line segments.

Let g be the function given by

$$
h(x)=\int_{0}^{x} f(t) d t
$$

a. Find $h(4), h^{\prime}(4), h^{\prime \prime}(4)$

Graph of f

$$
\begin{aligned}
& h(4)=\int_{0}^{4} f d \theta=-1+4=3 \\
& h^{\prime}(4)=f(4)=0 \\
& h^{\prime \prime}(4)=f^{\prime}(4)=-2
\end{aligned}
$$

b. Find all values of x in the open interval $(-5,5)$ at which h attains a local extremum. Justify your answer.

$$
\begin{array}{ll}
h^{\prime}(x)=f(x) \quad & \text { local } \max e x=-1,4 \\
& \text { local } \min @ x=-4,1
\end{array}
$$

$f(x)$ charges - to + for \min and vice versa ${ }^{n}$
c. Suppose f is defined for all real numbers and is periodic with a period of length 5 . The graph above shows two periods of f. Linearize h at $x=108$.

$$
\begin{aligned}
& x \in[0,5], n \in \mathbb{Z} \\
& (x+5 n)=h(x)+2 n
\end{aligned}
$$

$$
\begin{array}{ll}
\int_{a}^{a+5} f(t) d t=2 \quad \begin{array}{l}
\quad x \in[0,5], h \in \mathbb{1} \\
\\
h(x+5 n)=h(x)+2 \\
h^{\prime}(x+5 n)=h(x)
\end{array} \\
h(108)=h(3+21.5)=h(3)+42=44 \\
h^{\prime}(108)=h^{\prime}(3)=f(3)=2 \\
\Rightarrow L(x)=2(x-108)+44
\end{array}
$$

3. Let f be the piecewise function defined on $[-3,4]$ whose graph is given on the right, and let

$$
k(x)=\int_{0}^{2 x} g(t) d t
$$

a. What is the domain of k ?

$$
\begin{aligned}
& 2 x \in[-3,4] \\
& \Rightarrow x \in[-1.5,2]
\end{aligned}
$$

b. On what interval is k increasing?

$$
\begin{aligned}
& k^{\prime}(x)=g(2 x) \cdot 2>0 \quad \\
& 2 x \in[-3,-2] \Rightarrow x \in[2 x)>0 \\
& 2 \in[-1.5,-1]
\end{aligned}
$$

c. Find the x values on the interval $(-3,4)$ where k has a local extremum. Justify your answer.
$K^{\prime}(x)=g(2 x) \cdot 2$ change sigh when $2 x=-2$
(c) $x=-1$
local max go tue to the
d. Find the x-coordinate of each point of inflection of the graph of k on the open interval $(-3,4)$. Justify your answer.
$k^{n}(x)=4 g^{\prime}(2 x)$ charge syn when $2 x=0,2$ $\Rightarrow x=0,1$
d. Use technology to graph k
4. Let f be a function whose domain is the closed interval $[0,5]$. The graph of f is shown to the right. Let

$$
m(x)=\int_{\frac{x}{2}+3}^{0} f(t) d t
$$

a. What is the domain of m ?

$$
\frac{x}{2}+3 \in[0,5] \Rightarrow x \in[-6,4]
$$

b. Find $m^{\prime}(2)$

$$
m^{\prime}(2)=-\frac{1}{2} f(4)=\frac{3}{2}
$$

c. At what x is $m(x)$ a minimum?

5.

$$
f^{\prime}(x)=\left\{\begin{array}{c}
-\sqrt{4-(x+2)^{2}}+2, \quad-4 \leq x \leq 0 \\
5 e^{-\frac{x}{3}}-3, \quad 0<x \leq 4
\end{array}\right.
$$

The graph of the continuous function $f^{\prime}(x)$, shown in the figure above, has x-intercepts at $x=-2$ and $x=3 \ln \frac{5}{3}$. We also know that $f(0)=5$.
a. Write an equation for $f(x)$ using an accumulation function.

$$
f(x)=\int_{0}^{x} f^{\prime}(t) d t+5
$$

b. Find $f(-4)$ and $f(4)$

$$
\begin{aligned}
f(-4)=\int_{0}^{-4} f^{\prime}(t) d t+5 & =2 \pi-8+5 \approx 3.28 \\
f(4)=\int_{0}^{4} f^{\prime}(t) d t+5 & =\left(-15 e^{-\frac{t}{3}}-3 x\right)_{0}^{4}+5 \\
& =4.046
\end{aligned}
$$

c. Find all values of $x \in(-4,4)$ such that f has a point of inflection and a local extremum. Justify your answer.
$f^{\prime}(x)$ changes sign a $x=3 \ln 5 / 3$ (max)

$$
f^{n}(x) \text { changes sign @ } x=-2,0
$$

d. Use technology to graph f.
6. The function g is defined and differentiable on the closed interval $[-7,5]$ and satisfies $g(0)=1$. The graph of $y=g^{\prime}(x)$, the derivative of g, consists of a semi-circle and three line segments as shown on the figure to the side.

$$
g(x)=\int_{0}^{x} g^{\prime}(t) d t+1
$$

b. Find $g(-7)$ and $g(5)$

$$
\begin{aligned}
g(-7)=\int_{0}^{-7} g^{\prime}(t) d t+1 & =-\pi+2.5+1 \\
& =0.36 \\
g(5)=\int_{0}^{5} S^{\prime}(t) d t & =\pi+3.75-0.25 \\
& =6.64
\end{aligned}
$$

c. The function h is defined by $h(x)=g(x)-\frac{1}{2} x^{2}$. Find the x-coordinate of all critical points of h, where $-7<x<5$. Determine if they are local max/min or neither. Explain your reasoning.

$$
g^{\prime}(x)=x
$$

$$
\Rightarrow x=\sqrt{2},
$$

$g^{\prime}(x)-x$ goes the to -re

$$
\Rightarrow \max
$$

d. Use technology to graph h

