## CURVE ANALYSIS: EXTREMAS

(91-4)

1. Let $f$ be the function given by $f(x)=\frac{|x|-2}{x-2}$
(a) Find all the zeros of $f$.
(b) Find $f^{\prime}(1)$.
(c) Find $f^{\prime}(-1)$.
(d) Find the range of $f$.
(82-6)
2. A tank with a rectangular base and rectangular sides is to be open at the top. It is to be constructed so that its width is 4 metres and its volume is 36 cubic metres. If building the tank costs $\$ 10$ per square metre for the base and $\$ 5$ per square metre for the sides, what is the cost of the least expensive tank?
(95-1)
3. Let $f$ be the function given by $f(x)=\frac{2 x}{\sqrt{x^{2}+x+1}}$
(a) Find the domain of $f$. Justify your answer.
(b) Sketch the graph of $f$ in a viewing window $[-5,5],[-3,3]$.
(c) Write an equation for each horizontal asymptote of the graph of $f$.
(d) Find the range of $f$. Use $f^{\prime}(x)$ to justify your answer. Note: $f^{\prime}(x)=\frac{x+2}{\left(x^{2}+x+1\right)^{\frac{3}{2}}}$
(2000-3)
4. 



The figure above shows the graph of $f^{\prime}$, the derivative of the function $f$, for $-7 \leq x \leq 7$. The graph of $f^{\prime}$ has horizontal tangent lines at $x=-3, x=2$, and $x=5$, and a vertical tangent line at $x=3$.
(a) Find all values of $x$, for $-7<x<7$, at which $f$ attains a relative minimum. Justify your answer.
(b) Find all values of $x$, for $-7<x<7$, at which $f$ attains a relative maximum. Justify your answer.
(c) Find all values of $x$, for $-7<x<7$, at which $f^{\prime \prime}(x)<0$.
(d) At what value of $x$, for $-7 \leq x \leq 7$, does $f$ attain its absolute maximum? Justify your answer.
(80-2)
5. A rectangle ABCD with sides parallel to the coordinate axes is inscribed in the region enclosed by the graph of $y=-4 x^{2}+4$ and the $x$-axis as shown.
(a) Find the $x$ and $y$-coordinates of C so that the area of rectangle ABCD is a maximum.
(b) The point C moves along the curve with its $x$ coordinate increasing at the constant rate of 2 units per second. Find the rate of change of the area of rectangle ABCD when $x=\frac{1}{2}$.

(90-5)
6. Let $f$ be the function defined by $f(x)=\sin ^{2} x-\sin x$ for $0 \leq x \leq \frac{3 \pi}{2}$.
(a) Find the $x$-intercepts of the graph of $f$.
(b) Find the intervals on which $f$ is increasing.
(c) Find the absolute maximum value and the absolute minimum value of $f$. Justify the answer.
(92-3)
7. Let $f$ be the function given by $f(x)=\ln \left|\frac{x}{1+x^{2}}\right|$
(a) Find the domain of $f$.
(b) Determine whether $f$ is an even function, an odd function, or neither. Justify your conclusion.
(c) At what values of $x$ does $f$ have a relative maximum or a relative minimum? For each such $x$, use the first derivative test to determine whether $f(x)$ is a relative maximum or a relative minimum.
(d) Find the range of $f$.
(94BC-4)
8. Let $f(x)=6-x^{2}$. For $0<w<\sqrt{6}$, let $A(w)$ be the area of the triangle formed by the coordinate axes and the line tangent to the graph of $f$ at the point ( $w, 6-w^{2}$ ).
(a) Find $A(1)$
(b) For what value of $w$ is $A(w)$ a minimum?

(73-5)
9.
(a) Find the coordinates of the absolute maximum point for the curve $y=x e^{-k x}$ where $k$ is a fixed positive number. Justify your answer.
(b) Write an equation for the set of absolute maximum points for the curves $y=x e^{-k x}$ as $k$ varies through positive values.

