CURVE ANALYSIS: INFLECTION POINTS

(77-2)

1. Consider the function f defined by $f(x)=\left(x^{2}-1\right)^{3}$ for all real numbers x.
(a) For what values of x is the function increasing?
(b) Find the x - and y-coordinates of the relative maximum and minimum points. Justify your answer.
(c) For what values of x is the graph of f concave upward?
(d) Using the information found in parts (a), (b), and (c), sketch the graph of f on the axes provided.
(89BC-3)
2. Consider the function f defined by $f(x)=e^{x} \cos x$ with domain $[0,2 \pi]$.
(a) Find the absolute maximum and minimum values of $f(x)$.
(b) Find the intervals on which f is increasing.
(c) Find the x-coordinate of each point of inflection of the graph of f.
(2015-5)
3.

The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the interval $[-3,4]$. The graph of f^{\prime} has horizontal tangents at $x=-1, x=1$, and $x=3$. The areas of the regions bounded by the x-axis and the graph of f^{\prime} on the intervals $[-2,1]$ and $[1,4]$ are 9 and 12 respectively.
(a) Find all x-coordinates at which f has a relative maximum. Give a reason for your answer.
(b) On what open intervals contained in $-3<x<4$ is the graph of f both concave down and decreasing? Give a reason for your answer.
(c) Find the x-coordinates of all points of inflection for the graph of f. Give a reason for your answer.
(d) Given that $f(1)=3$, write an expression for $f(x)$ that involves an integral. Find $f(4)$ and $f(-2)$.
(2008-6)
4. Let f be the function given by $f(x)=\frac{\ln x}{x}$ for all $x>0$. The derivative of f is given by $f^{\prime}(x)=\frac{1-\ln x}{x^{2}}$.
a) Write an equation for the line tangent to the graph of f at $x=e^{2}$.
b) Find the x-coordinate of the critical point of f. Determine whether this point is a relative minimum, a relative maximum or neither for the function f. Justify your answer.
c) The graph of the function f has exactly one point of inflection. Find the x-coordinate of this point.
d) Find $\lim _{x \rightarrow 0^{+}} f(x)$
(92BC-4)
5. Let f be a function defined by $f(x)=\left\{\begin{array}{rr}2 x-x^{2} & \text { for } x \leq 1 \\ x^{2}+k x+p & \text { for } x>1\end{array}\right.$
(a) For what values of k and p will f be continuous and differentiable at $x=1$?
(b) For the values of k and p found in part (a), on what interval or intervals is f increasing?
(c) Using the values of k and p found in part (a), find all points of inflection of the graph of f. Support your conclusion.
(2001-4)
6. Let h be a function defined for all $x \neq 0$ such that $h(4)=-3$ and the derivative h is given by $h^{\prime}(x)=\frac{x^{2}-2}{x}$ for all $x \neq 0$.
(a) Find all values of x for which the graph of h has a horizontal tangent, and determine whether h has a local maximum, a local minimum, or neither at each of these values. Justify your answers.
(b) On what intervals, if any, is the graph of h concave up? Justify your answer.
(c) Write an equation for the line tangent to the graph of h at $x=4$.
(d) Does the line tangent to the graph of h at $x=4$ lie above or below the graph of h for $x>4$? Why?
(2013-4)
7.

Graph of \boldsymbol{f}^{\prime}
The figure above shows the graph of f^{\prime}, the derivative of a twice-differentiable function f, on the closed interval $0 \leq x \leq 8$. The graph of f^{\prime} has horizontal tangent lines at $x=1, x=3$, and $x=5$. The areas of the regions between the graph of f^{\prime} and the x-axis are labeled in the figure. The function f is defined for all real numbers and satisfies $f(8)=4$.
(a) Find all values of x on the open interval $0<x<8$ for which the function f has a local minimum. Justify your answer.
(b) Determine the absolute minimum value of f on the closed interval $0 \leq x \leq 8$. Justify your answer.
(c) On what open intervals contained in $0<x<8$ is the graph of f both concave down and increasing? Explain your reasoning.
(d) The function g is defined by $g(x)-(f(x))^{3}$. If $f(3)=-\frac{5}{2}$, find the slope of the line tangent to the graph of g at $x=3$.

