FUNDAMENTAL THEOREM OF CALCULUS

(2009-6)
1.

The derivative of a function f is defined by:

$$f'(x) = \begin{cases} g(x) & \text{for } -4 \leq x \leq 0 \\ 5e^{x/3} - 3 & \text{for } 0 < x \leq 4 \end{cases}$$

The graph of the continuous function $f'(x)$, shown in the figure above, has x-intercepts at $x = -2$ and $x = 3 \ln \frac{5}{3}$. The graph of g on $[-4, 0]$ consists of a semi-circle, and $f(0) = 5$.

(a) For $-4 < x < 4$, find all values of x at which the graph of f has a point of inflection. Justify your answer.

(b) Find $f(-4)$ and $f(4)$.

(c) For $-4 \leq x \leq 4$, find the value of x at which f has an absolute maximum. Justify your answer.

(2010-5)
2.

The function g is defined and differentiable on the closed interval $[-7, 5]$ and satisfies $g(0) = 5$. The graph of $y = g'(x)$, the derivative of g, consists of a semi-circle and three line segments as shown on the figure above.

(a) Find $g(3)$ and $g(-2)$.

(b) Find the x-coordinate of each point of inflection of the graph of $y = g(x)$ on the interval $-7 < x < 5$. Explain your reasoning.

(c) The function h is defined by $h(x) = g(x) - \frac{1}{2}x^2$. Find the x-coordinate of each critical point of h, where $-7 < x < 5$, and classify each critical point as the location of a relative minimum, relative maximum, or neither a minimum nor a maximum. Explain your reasoning.
Let f be a function that is continuous on the interval $[0, 4)$. The function f is twice differential except at $x = 2$. The function f and its derivatives have the properties indicated in the table above, where DNE indicates that the derivatives of f do not exist at $x = 2$.

(a) For $0 < x < 4$, find all values of x at which f has a relative extremum. Determine whether f has a relative maximum or a relative minimum at each of these values. Justify your answer.

(b) Sketch the graph of a function that has all the characteristics of f.

(c) Let g be the function defined by $g(x) = \int_{1}^{x} f(t) \, dt$ on the open interval $(0, 4)$. For $0 < x < 4$, find all values of x at which g has a relative extremum. Determine whether g has relative maximum or a relative minimum at each of these values. Justify your answer.

(d) For the function defined in part (c), find all values of x, for $0 < x < 4$, at which the graph of g has a point of inflection. Justify your answer.

The graph of the function f shown above consists of a semicircle and three line segments. Let g be the function given by $g(x) = \int_{-3}^{x} f(t) \, dt$

(a) Find $g(0)$ and $g'(0)$.

(b) Find all values of x in the open interval $(-5, 4)$ at which g attains a relative maximum. Justify your answer.

(c) Find the absolute minimum value of g on the closed interval $[-5, 4]$. Justify your answer.

(d) Find all values of x in the open interval $(-5, 4)$. At which the graph of g has a point of inflection.
(2003-4)
5.

Let \(f \) be a function defined on the closed interval \([-3, 4]\) with \(f(0) = 3 \). The graph of \(f' \), the derivative of \(f \), consists of one line segment and a semicircle as shown.

(a) On what intervals, if any, is \(f \) increasing? Justify your answer.

(b) Find the \(x \)-coordinate of each point of inflection of the graph of \(f \) on the open interval \((-3, 4)\). Justify your answer.

(c) Find an equation for the line tangent to the graph of \(f \) at the point \((0, 3)\)

(d) Find \(f(-3) \) and \(f(4) \). Show the work that leads to your answers

(2011(B)-6)
6.

Let \(g \) be the piecewise linear function defined on \([-2\pi, 4\pi]\) whose graph is given above, and let
\[
f(x) = g(x) - \cos \frac{x}{2}
\]

(a) Find \(\int_{-2\pi}^{4\pi} f(x) \, dx \). Show the computations that lead to your answer.

(b) Find all \(x \)-values in the open interval \((-2\pi, 4\pi)\) for which \(f \) has a critical point.

(c) Let \(h(x) = \int_{0}^{3x} g(t) \, dt \). Find \(h' \left(-\frac{\pi}{3} \right) \).
7. The graph of the function f shown above consists of six line segments. Let g be the function given by $g(x) = \int_0^x f(t)dt$.

(a) Find $g(4), g'(4), g''(4)$.

(b) Does g have a relative minimum, a relative maximum, or neither at $x = 1$? Justify your answer.

(c) Suppose f is defined for all real numbers and is periodic with a period of length 5. The graph above shows two periods of f. Given that $g(5) = 2$, find $g(10)$ and write an equation of the line tangent to the graph of g at $x = 108$.

8. The graph of the function f shown above consists of two line segments. Let g be the function given by $g(x) = \int_0^x f(t)dt$.

(a) Find $g(1), g'(1), g''(1)$.

(b) For what values of x in the open interval $(-2, 2)$ is g increasing? Explain your reasoning.

(c) For what values of x in the open interval $(-2, 2)$ is the graph of g concave down? Explain your reasoning.

(d) Sketch the graph of g on the closed interval $[-2, 2]$.
9. (a) Given \(5x^3 + 40 = \int_c^x f(t) \, dt \)
 (i) Find \(f(x) \)

 (ii) Find the value of \(c \).

 (b) If \(F(x) = \int_x^3 \sqrt{1 + t^3} \, dt \), find \(F'(x) \).

10. Let \(f \) be a function whose domain is the closed interval \([0, 5]\).
 The graph of \(f \) is shown. Let \(h(x) = \int_0^{x^2 + 3} f(t) \, dt \)
 (a) Find the domain of \(h \).

 (b) Find \(h'(2) \).

 (c) At what \(x \) is \(h(x) \) a minimum? Show the analysis that leads to your conclusion.

11. | \(x \) | \(-2\) | \(-2 < x < -1\) | \(-1\) | \(-1 < x < 1\) | \(1\) | \(1 < x < 3\) | \(3\) |
 | \(f(x) \) | 12 | Positive | 8 | Positive | 2 | Positive | 7 |
 | \(f'(x) \) | -5 | Negative | 0 | Negative | 0 | Positive | \(\frac{1}{2}\) |
 | \(g(x) \) | -1 | Negative | 0 | Positive | 3 | Positive | 1 |
 | \(g'(x) \) | 2 | Positive | \(\frac{3}{2}\) | Positive | 0 | Negative | -2 |

The twice-differentiable functions \(f \) and \(g \) are defined for all real numbers \(x \). Values of \(f \), \(f' \), \(g \), and \(g' \) for various values of \(x \) are given in the table above.

(a) Find the \(x \)-coordinate of each relative minimum of \(f \) on the interval \([-2, 3]\). Justify your answers.

(b) Explain why there must be a value \(c \), for \(-1 < c < 1\), such that \(f''(c) = 0 \).

(c) The function \(h \) is defined by \(h(x) = \ln f(x) \). Find \(h'(3) \). Show the computations that lead to your answer.

(d) Evaluate
 \[
 \int_{-2}^{3} f'(g(x))g'(x) \, dx
 \]