
Unit 4: Area Under a Curve    Review 
 

Approximating the Area Under a Curve 
 
Given a function 𝑓, we said that we could approximate the signed area under the curve on the interval [𝑎, 𝑏] if we used a 
bunch of rectangles. In general, the idea is to partition the interval into 𝑛 pieces so we have  

𝑃 = {𝑥0 = 𝑎, 𝑥1, 𝑥2, … , 𝑥𝑛−1, 𝑥𝑛 = 𝑏} 
And the length of each subinterval is Δ𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1 and we can pick some 𝑐𝑘 ∈ [𝑥𝑘−1, 𝑥𝑘] so that 𝑓(𝑐𝑘) is the height. 
Adding up all these areas we get a Riemann Sum 

∑ 𝑓(𝑐𝑘)Δ𝑥𝑘  

𝑛

𝑘=1

≈ Area 

The Riemann sum will become a better approximation as the partition as it becomes finer (the size of the longest 
interval (norm) goes to 0, ‖𝑃‖ → 0) 

lim
‖𝑃‖→0

∑ 𝑓(𝑐𝑘)Δ𝑥𝑘

𝑛

𝑘=1

= Area ≝ ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

 

If we want to use a regular partition so that Δ𝑥𝑘 =
𝑏−𝑎

𝑛
 ∀ 𝑘 then we have three options for our choice of 𝑐𝑘 ∈ [𝑥𝑘−1, 𝑥𝑘]  

The right endpoint, 𝑐𝑘 = 𝑥𝑘, the left endpoint, 𝑐𝑘 = 𝑥𝑘−1 = 𝑥𝑘 − Δ𝑥, or the middle point, 𝑐𝑘 =
𝑥𝑘+𝑥𝑘−1

2
= 𝑥𝑘 −

1

2
Δ𝑥 

In general, 𝑐𝑘 = 𝑥𝑘 − 𝑇Δ𝑥, where 𝑇 = 0 for RRAM, 𝑇 = 1 for LRAM and 𝑇 = 0.5 for MRAM (as in our program), but for 
this example I will use RRAM since it simplifies the expression. The only thing left to do is note 𝑥𝑘 = 𝑎 + 𝑘 ⋅ Δ𝑥 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= lim
𝑛→∞

∑ 𝑓 (𝑎 + 𝑘 ⋅
𝑏 − 𝑎

𝑛
) ⋅

𝑏 − 𝑎

𝑛
 

𝑛

𝑘=1

= Area 

Example: Write the following integral as a Riemann sum 

∫ (𝑥2 + 𝑥)𝑑𝑥
2

−1

 

Solution:  
We can write it in terms of an arbitrary 𝑐𝑘 given an arbitrary partition 𝑃, and as RRAM. 

∫ (𝑥2 + 𝑥)𝑑𝑥
2

−1

= lim
‖𝑃‖→0

∑(𝑐𝑘
2 + 𝑐𝑘)Δ𝑥𝑘

𝑛

𝑘=1

where 𝑃 is a partiton of [−1, 3] 

∫ (𝑥2 + 𝑥)𝑑𝑥
2

−1

= lim
𝑛→∞

∑ ((
3𝑘

𝑛
− 1)

2

+ (
3𝑘

𝑛
− 1)) ⋅

3

𝑛

𝑛

𝑘=1

 

Example: Write the following Riemann sum as an integral 

lim
𝑛→∞

∑ ln (
4𝑘

𝑛
+ 2) ⋅

2

𝑛

𝑛

𝑘=1

 

Solution:  

Two ideas. The first is we identify 
2

𝑛
 as 

𝑏−𝑎

𝑛
 and then note the interval has length 2. Then to identify the function we 

clearly see our 𝑓(𝑥) = ln 𝑔(𝑥) for some linear 𝑔. There are multiple approaches from here. We notice that 𝑔(𝑎) = 2 
and 𝑔(𝑏) = 6 and each step is moving twice as fast as Δ𝑥. We could have 𝑔(𝑥) = 2𝑥 where 𝑥 ∈ [1, 3] or we could shift 
the function by making 𝑎 = 0 so �̅�(𝑥) = 2𝑥 + 2 and 𝑥 ∈ [0, 2]. 

lim
𝑛→∞

∑ ln (
4𝑘

𝑛
+ 2) ⋅

2

𝑛

𝑛

𝑘=1

= ∫ ln(2𝑥 + 2) 𝑑𝑥
2

0

= ∫ ln(2𝑥) 𝑑𝑥
3

1

 

The second is setting 
4𝑘

𝑛
+ 2 = 𝑘Δ𝑥 + 𝑎 immediately, so that 𝑎 = 2 and 

4

𝑛
=

𝑏−𝑎

𝑛
. This way we get that 𝑔(𝑥) = 𝑥 where 

𝑥 ∈ [2, 6] or we could have that �̅�(𝑥) = 𝑥 + 2 with 𝑥 ∈ [0, 4]. In both cases we have 𝑔(𝑎) = �̅�(𝑎) = 2 and 𝑔(𝑏) =

�̅�(𝑏) = 6. The only problem is we don’t have 
4

𝑛
 in the sum so we multiply and divide by 2.  

lim
𝑛→∞

∑
1

2
ln (

4𝑘

𝑛
+ 2) ⋅

4

𝑛

𝑛

𝑘=1

= ∫
1

2
ln(𝑥 + 2) 𝑑𝑥

4

0

= ∫
1

2
ln(𝑥) 𝑑𝑥

6

2
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We also used trapezoids to approximate the area. We have a regular partition Δ𝑥 =
𝑏−𝑎

𝑛
 and on the interval [𝑥𝑘−1, 𝑥𝑘] 

we get an average height of 
1

2
(𝑓(𝑥𝑘−1) + 𝑓(𝑥𝑘)). Then the integral can be approximated as 

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

≈ (
1

2
𝑓(𝑎) + 𝑓(𝑥1) + 𝑓(𝑥2) + ⋯ + 𝑓(𝑥𝑛−1) +

1

2
𝑓(𝑥𝑛)) Δ𝑥 

Since we add each middle point twice. 
 
Finally, we have a set of integral properties that we can prove from the limit definition and the area under a curve 
definition. One really important identity is the average value of a function on [𝑎, 𝑏] 

avg 𝑓 = lim
‖𝑃‖→0

∑
𝑓(𝑐𝑘)

𝑛

𝑛

𝑘=1

 

For a partition 𝑃 of [𝑎, 𝑏] 

avg 𝑓 = lim
‖𝑃‖→0

∑
𝑓(𝑐𝑘)

𝑛

𝑛

𝑘=1

⋅
Δ𝑥

Δ𝑥
= lim

‖𝑃‖→0

1

𝑛 ⋅ Δ𝑥
∑ 𝑓(𝑐𝑘)Δ𝑥

𝑛

𝑘=1

 

Set Δ𝑥 =
𝑏−𝑎

𝑛
 ∀ 𝑘 

avg 𝑓 = lim
‖𝑃‖→0

1

𝑏 − 𝑎
∑ 𝑓(𝑐𝑘)Δ𝑥

𝑛

𝑘=1

=
1

𝑏 − 𝑎
 lim
‖𝑃‖→0

∑ 𝑓(𝑐𝑘)Δ𝑥

𝑛

𝑘=1

=
1

𝑏 − 𝑎
∫ 𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 

 
And we get that for continuous functions 𝑓, IVT guarantees ∃ some 𝑐 ∈ [𝑎, 𝑏] such that 𝑓(𝑐) = avg 𝑓. This is called the 
Mean Value Theorem (for Integrals).  
 

Things we need to know and understand:  

• How to approximate an area using RRAM and Trapezoid method 

• How to evaluate an integral using geometry and symmetry 

• How to evaluate an integral using your calculator 

• How to write an integral as a Riemann sum and how to write a Riemann sum as an integral 

• How to find the average value of a function 

• Why integral properties are true 
Review Questions: 

1. Find the area under the curve 𝑓(𝑥) =
1

𝑥2+1
 on the interval [−4, 4] as follows: 

a. Using 4 subintervals and MRAM 
b. Using 4 subintervals and Trapezoid Method 
c. Using your calculator 

2. Write the following integral as a Riemann sum using a limit: 
a. ‖𝑃‖ → 0 
b. 𝑛 → ∞ 

∫ sin2 𝑥 𝑑𝑥
𝜋

0

 

3. Write the following limit as a discrete integral and then evaluate it using geometry. 

lim
𝑛→∞

∑ (3 +
6𝑘

𝑛
) ⋅

1

𝑛

𝑛

𝑘=1

 

4. Find the average distance between the curve 𝑦 = 4 − 𝑥2  and the origin on the interval 𝑥 ∈ [−2, 2]. 
5. Prove that  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= − ∫ 𝑓(𝑥)𝑑𝑥
𝑎

𝑏

 

 
 



Unit 4: Area Under a Curve    Review 
 

 Solutions: 
1.   

a. MRAM we get a partition of 𝑃 = {−4, −2, 0, 2, 4} and Δ𝑥 = 2 

Area ≈ 2(𝑓(−3) + 𝑓(−1) + 𝑓(1) + 𝑓(3)) = 2.4 

b. Trapezoid we get 

Area ≈ 2 (
1

2
𝑓(−4) + 𝑓(−2) + 𝑓(0) + 𝑓(2) +

1

2
𝑓(4)) = 2.918 … =

248

85
 

c. Using our calculator, we have 

∫
1

𝑥2 + 1
𝑑𝑥

4

−4

= 2.651635 … 

2.   
a. Let 𝑃 be a partition of [𝑎, 𝑏]  

lim
‖𝑃‖→0

∑ sin2 𝑐𝑘 Δ𝑥

𝑛

𝑘=1

 

b. Use Δ𝑥𝑘 =
𝜋

𝑛
, so 𝑐𝑘 = 𝑥𝑘 =

𝑘𝜋

𝑛
 

lim
𝑛→∞

∑ sin2 (
𝜋𝑘

𝑛
) ⋅

𝜋

𝑛

𝑛

𝑘=1

 

3. Multiple solutions of course, my first approach would be to set an interval of length 1 and make 𝑓(𝑎) = 3 and 
𝑓(𝑏) = 9 for linear 𝑓. It moves at a step 6 times faster than 𝑥 so 𝑓(𝑥) = 6𝑥 + 3 for 𝑥 ∈ [0, 1] 

∫ (6𝑥 + 3)𝑑𝑥
1

0

=
9 + 3

2
⋅ 1 = 6 

Since this makes a trapezoid. 

4. We get the distance between the curve 𝑦 = 4 − 𝑥2 and the point (0, 0) is 𝑑(𝑥) = √𝑥4 − 7𝑥2 + 16 

avg 𝑓 =
1

4
∫ √𝑥4 − 7𝑥2 + 16𝑑𝑥

2

−2

=
1

4
(12.208 … ) = 3.0521 … 

5. We have that  

∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎

= lim
‖𝑃‖→0

∑ 𝑓(𝑐𝑘)Δ𝑥𝑘

𝑛

𝑘=1

 

For the partition 𝑃 = {𝑎 = 𝑥0, 𝑥1, 𝑥2, … , 𝑥𝑛 = 𝑏} where Δ𝑥𝑘 = 𝑥𝑘 − 𝑥𝑘−1 > 0 ∀ 𝑘. Then consider the 
partition ℙ = {𝑏 = 𝑥𝑛, 𝑥𝑛−1, … , 𝑥1, 𝑥0 = 𝑎} with Δ𝕩𝑘 = 𝑥𝑘−1 − 𝑥𝑘 < 0 ∀ 𝑘.  

lim
‖ℙ‖→0

∑ 𝑓(𝑐𝑘)Δ𝕩𝑘

𝑛

𝑘=1

= lim
‖𝑃‖→0

∑ 𝑓(𝑐𝑘)Δ𝕩𝑘

𝑛

𝑘=1

= lim
‖𝑃‖→0

∑ 𝑓(𝑐𝑘)(−Δ𝑥𝑘)

𝑛

𝑘=1

= − lim
‖𝑃‖→0

∑ 𝑓(𝑐𝑘)Δ𝑥𝑘

𝑛

𝑘=1

 

 

 

Fundamental Theorem of Calculus  
 
We can define the area under the curve of 𝑓 on the interval [𝑎, 𝑥] as a function: 

𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

𝑎

 

We showed that Δ𝐹(𝑥) = 𝑓(𝑐)Δ𝑥 for some 𝑐 ∈ [𝑥, 𝑥 + Δ𝑥] by MVT. This is equivalent to 
Δ𝐹(𝑥)

Δ𝑥
= 𝑓(𝑐) and we can let 

Δ𝑥 → 0. 

lim
Δ𝑥→0

Δ𝐹(𝑥)

Δ𝑥
= lim

Δ𝑥→0
𝑓(𝑐) 

⇒
𝑑𝐹

𝑑𝑥
= 𝑓(𝑥) 

And so 𝐹 is the antiderivative of 𝑓. That is to say, it is some function that we can differentiate and get 𝑓. 
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The first part of the Fundamental Theorem of Calculus states this fact: 

𝑑

𝑑𝑥
∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎

= 𝑓(𝑥) 

The second part states that since 𝐹 is an antiderivative then define 𝐹 as follows 

𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

0

 

Then  

∫ 𝑓(𝑡)𝑑𝑡
𝑏

𝑎

= ∫ 𝑓(𝑡)𝑑𝑡
0

𝑎

+ ∫ 𝑓(𝑡)𝑑𝑡
𝑏

0

 

                        = − ∫ 𝑓(𝑡)𝑑𝑡
𝑎

0

+ ∫ 𝑓(𝑡)𝑑𝑡
𝑏

0

 

 = 𝐹(𝑏) − 𝐹(𝑎) 
 
We want to be comfortable analyzing functions defined as integrals by using FTC.  
 

Things we need to know and understand:  

• How to derive the Fundamental Theorem  

• How to analyze functions defined as integrals 

• How to use both parts of FTC 
 

 Review Questions: 
6. Using the limit definition of derivative show that  

𝑑

𝑑𝑥
∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎

= 𝑓(𝑥) 

7. If ℎ is the function shown below then accurately graph the function 𝑔 

 

𝑔(𝑥) = ∫ ℎ(𝑡)𝑑𝑡
2𝑥

𝑥

 

8. Determine difference in the area between the curves 𝑓(𝑥) = cos 𝑥 and 𝑔(𝑥) = 1 −
𝑥2

2
 on the interval [−

𝜋

2
,

𝜋

2
] 
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Solutions: 
6. With the limit definition we have 

𝑑

𝑑𝑥
∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎

= lim
ℎ→0

∫ 𝑓(𝑡)𝑑𝑡
𝑥+ℎ

𝑎
− ∫ 𝑓(𝑡)𝑑𝑡

𝑥

𝑎

ℎ
 

         = lim
ℎ→0

1

ℎ
⋅ ∫ 𝑓(𝑡)𝑑𝑡

𝑥+ℎ

𝑥

 

   = lim
ℎ→0

𝑓(𝑐) 

 
= 𝑓(𝑥)     

7. We want to identify 𝑔′(𝑥) and 𝑔′′(𝑥) 
𝑔′(𝑥) = 2ℎ(2𝑥) − ℎ(𝑥) 

𝑔′′(𝑥) = 4ℎ′(2𝑥) − ℎ′(𝑥) 
Since we are comparing ℎ(𝑥) and ℎ(2𝑥) we can write ℎ as a piecewise function  

ℎ(𝑥) = {
2𝑥 + 2, −2 ≤ 𝑥 < 0

2 − 𝑥, 0 ≤ 0 ≤ 2
 

 

ℎ(2𝑥) = {
4𝑥 + 2, −1 ≤ 𝑥 < 0
2 − 2𝑥, 0 ≤ 𝑥 < 1

 

 

⇒ 𝑔′(𝑥) = {
6𝑥 + 2, −1 ≤ 𝑥 < 0
2 − 3𝑥, 0 ≤ 𝑥 ≤ 1

 

So, 𝑔′ changes sign when it passes through 0 which happens when 6𝑥 + 2 = 0 ⇒ 𝑥 = −
1

3
 and when             

2 − 3𝑥 = 0 ⇒ 𝑥 =
2

3
 are minimums and maximums respectively.  

𝑔 (−
1

3
) = ∫ ℎ(𝑡)𝑑𝑡

−
2
3

−
1
3

= −
1

3
 

using area of a trapezoid with average height 1 and width −
1

3
.  

𝑔 (
2

3
) = ∫ ℎ(𝑡)𝑑𝑡

4
3

2
3

=
2

3
 

There are inflection points when 𝑔′′(𝑥) changes sign, which only happens at 0 where we go from positive 
(concave up) to negative (concave down). 
 

Test the endpoints to get 𝑔(−1) = ∫ ℎ(𝑡)𝑑𝑡
−2

−1
= 1 and 𝑔(1) = ∫ ℎ(𝑡)𝑑𝑡

2

1
=

1

2
 

 
8. Difference in area is 

𝐴 = ∫ (cos 𝑡 − 1 +
𝑡2

2
) 𝑑𝑡

𝜋/2

−𝜋/2

= [sin 𝑡 − 𝑡 +
𝑡3

6
]

𝜋/2

−𝜋/2
= (1 −

𝜋

2
+

𝜋3

48
) − (−1 +

𝜋

2
−

𝜋3

48
) 

𝐴 = 2 − 𝜋 +
𝜋3

24
≈ 0.15 

By the MVT we can find 𝑐 ∈ [𝑥, 𝑥 + ℎ] 

where 𝑓(𝑐) = avg 𝑓 

 As ℎ → 0 we have 𝑐 → 𝑥 
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