Applied Rates of Change

Goal:

- Can use derivative rules to find appropriate rate of change for the context of the problem.
- Can use chain rule fluently to find rate of change with respect to time.

Terminology:

- Differential Equation

In your groups you need to make up 3 stories that relate one unit to another. I want to see a reasonable graph that describes the scenario and then an equation that could describe the graph. To help you choose your units we have a handy chart that will tell you what relation you should be looking at.

Birthday Month	Unit	Birthday Month	Unit	Birthday Month	Unit
January	Volume $\left(\mathrm{m}^{3}\right)$	May	Cost $(\$)$	September	Humidity (\%)
February	Volume (L)	June	Memory (MB)	October	Population (people)
March	Temperature $\left({ }^{\circ} \mathrm{C}\right)$	July	Force (N)	November	Charge (C - Coulomb)
April	Pressure (atm)	August	Mass (kg)	December	Light Intensity (cd - candela)

Scenario \#1 Person 1 vs. time

Description:	Graph:
Equation:	Differential Equation:

Scenario \#1 Person 2 vs. Any unit that is not time

Description:	Graph:

Equation:	Differential Equations:

Example: Concentration is measure in amount of substance per unit volume. Imagine we start with a empty glass and add water at some variable rate and add sugar crystals at some other rate.
(a) Write an equation to model the concentration
(b) make a differential equation with respect to time
(c) make a differential equation with respect to amount of sugar

Practice Problems: 3.3: \# 1-6, 8, 9
3.4: 1-6 are okay. Don't worry about remembering the vocab though

In Class Evidence

3. If a tank holds 1000L of water, which takes an hour to drain from the bottom of the tank then volume of water remaining in the tank after t minutes is

$$
V=1000\left(1-\frac{t^{2}}{60}\right)
$$

Find the rate at which water is flowing out of the tank after 10 minutes.
4. The mass in kg of the part of a wire that lies between its left endpoint and a point x is

$$
M=\sqrt{x}
$$

a. Find an approximate value for the average density from $x=1$ to $x=1.1 \mathrm{~m}$
b. Find the density when $x=1 \mathrm{~m}$
6. The population of a bacteria colony after t hours is

$$
n=1000+180 t+25 t^{2}+3 t^{3}
$$

Find the growth rate after 3 hours
7. A substance at constant temperature will have a relationship between volume and pressure. The isothermal compressibility is

$$
\beta=-\frac{1}{V} \cdot \frac{d V}{d P}
$$

And measures how fast the volume changes as pressure changes ($d V / d P$) per unit volume $(1 / V)$. The volume of a sample in cubic meters at $25^{\circ} \mathrm{C}$ is related to the pressure in kilopascals by

$$
V=\frac{5.3}{P}
$$

Find the compressibility when pressure is 40 kPa

