Applied Rates of Change

Goal:

- Can use derivative rules to find appropriate rate of change for the context of the problem.
- Can use chain rule fluently to find rate of change with respect to time.

Terminology:

• Differential Equation

In your groups you need to make up 3 stories that relate one unit to another. I want to see a reasonable graph that describes the scenario and then an equation that could describe the graph. To help you choose your units we have a handy chart that will tell you what relation you should be looking at.

Birthday Month	Unit	Birthday Month	Unit	Birthday Month	Unit
January	Volume (m ³)	May	Cost (\$)	September	Humidity (%)
February	Volume (L)	June	Memory (MB)	October	Population (people)
March	Temperature (°C)	July	Force (N)	November	Charge (C - Coulomb)
April	Pressure (atm)	August	Mass (kg)	December	Light Intensity (cd – candela)

Scenario #1 Person 1 vs. time

Description:	Graph:
Equation:	Differential Equation:

Scenario #1 Person 2 vs. Any unit that is not time

Description:	Graph:

Equation:	Differential Equations:	

Example: Concentration is measure in amount of substance per unit volume. Imagine we start with a empty glass and add water at some variable rate and add sugar crystals at some other rate.

- (a) Write an equation to model the concentration
- (b) make a differential equation with respect to time
- (c) make a differential equation with respect to amount of sugar

In Class Evidence

3. If a tank holds 1000L of water, which takes an hour to drain from the bottom of the tank then the volume of water remaining in the tank after t minutes is

$$V = 1000 \left(1 - \frac{t^2}{60} \right)$$

Find the rate at which water is flowing out of the tank after 10 minutes.

4. The mass in kg of the part of a wire that lies between its left endpoint and a point x is

$$M = \sqrt{x}$$

a. Find an approximate value for the average density from x = 1 to x = 1.1m

b. Find the density when x = 1m

6. The population of a bacteria colony after *t* hours is

$$n = 1000 + 180t + 25t^2 + 3t^3$$

Find the growth rate after 3 hours

7. A substance at constant temperature will have a relationship between volume and pressure. The isothermal compressibility is

$$\beta = -\frac{1}{V} \cdot \frac{dV}{dP}$$

And measures how fast the volume changes as pressure changes (dV/dP) per unit volume (1/V). The volume of a sample in cubic meters at 25°C is related to the pressure in kilopascals by

$$V = \frac{5.3}{P}$$

Find the compressibility when pressure is 40 kPa