Applied Rates of Change - More Practice

Goal:

- Understands how to relate variables to time and to each other when taking differential equations
- Can use geometric equations and understands their applications
- Can use scientific equations involving a differential equation

Terminology:

- Differential Equation

Volume: The volume V of a cone is related to the radius r and height h and can be expressed as

$$
V=\frac{1}{3} \pi r^{2} h
$$

a. How is $d V / d t$ related to $d r / d t$ if h is constant? Write a sentence to describe a scenario where this would occur and draw a picture that models it.
b. How does the change in volume with respect to time relate to the change in radius and height if neither are constant? Write a sentence to describe a scenario where this would occur and draw a picture that models it.
c. How is the change in volume with respect to height related to the change in radius if neither r or h are constant? Write a sentence to describe a scenario where this would occur and draw a picture that models it.

Distance: Let x and y be the horizontal and vertical distance between two points. Then the distance between then points is

$$
h=\sqrt{x^{2}+y^{2}}
$$

a. How is $d h / d t$ related to $d x / d t$ if y is constant? Write a sentence to describe a scenario where this would occur and draw a picture that models it.
b. How is the change in x with respect to time related to the change in y if h is constant? Write a sentence to describe a scenario where this would occur and draw a picture that models it.
c. How is the change in h related to the change in x and y over time if neither are constant? Write a sentence to describe a scenario where this would occur and draw a picture that models it.
d. How would this equation be extended for 3 dimensions?

Volume of Prism: The volume of a prism is related to the area of the base A and the height h as

$$
V=A \cdot h
$$

a. How is $d V / d t$ related to $d h / d t$ if A is constant? Write a sentence to describe a scenario where this would occur and draw a picture that models it.
b. How is the change in volume related to the change in height and area over time if neither are constant? Write a sentence to describe a scenario where this would occur and draw a picture that models it.
c. How is $d A / d h$ related to $d V / d t$ if neither are constant? Write a sentence to describe a scenario where this would occur and draw a picture that models it.

Economics: The cost to produce n units is $C(n)$ and the revenue is $R(n)$.
a. Determine an expression for the profit to produce n units, $P(n)$
b. How does $d P / d n$ relate to $d C / d n$ and $d R / d n$? Write a sentence to describe a scenario where $d C / d n$ is constant but $d R / d n$ is variable.

Physics: The kinetic energy of a moving object is related to its velocity and mass

$$
K=\frac{1}{2} m v^{2}
$$

a. How does $d K / d t$ relate to $d v / d t$ if mass is constant? Write a sentence to describe a scenario where this would occur and draw a picture that models it.
b. The force is related to mass and acceleration of an object

$$
F=m a
$$

How does F relate to the change in kinetic energy with respect to time?
c. Work is related to force and distance

$$
W=F d
$$

How does W relate to the change in kinetic energy with respect to time? Interpret the results by considering $\Delta K / \Delta t$

Chemistry: For an ideal gas pressure, volume and temperature are related by

$$
P V=n R T
$$

Where n and R are constants.
a. How does the volume change with respect to temperature if pressure is constant?
b. For an ideal gas, the kinetic energy of a closed system is related to the heat added q and the energy lost by the gas changing volume.

$$
E=q-P V
$$

Relate the change in kinetic energy with respect to the change in volume. Draw a picture to illustrate heating a closed container of helium, such that the volume can change.
c. For monotonic ideal gasses (like helium), the kinetic energy is related to the change in its temperature as

$$
E=\frac{3}{2} n R T
$$

Relate the change in kinetic energy with respect to the change in the temperature of the gas.
d. The specific heat capacity of a gas is how much heat (Δq) is needed to change the temperature of the gas (ΔT). Show that the specific heat capacity at constant pressure is

$$
\frac{d q}{d T}=\frac{5}{2} n R
$$

e. Recall that the kinetic energy of a gas only depends on change in heat added and change in volume (not the change in pressure). Deduce that the specific heat capacity at constant volume is $\frac{3}{2} n R$

