SOLUTIONS for NATURAL GROWTH PART 1

1. a. $y = Ce^{-t}$ b. $c = 20e^{-0.1x}$ c. $z = 5e^{3t}$ 2. a. $\frac{dB}{dt} = kB$, k > 0 where B is the bacteria population at time t (min) b. Steady state is B = 0 and is unstable c. $B(0) = B_0$ and $B(20) = 2B_0$ d. $B = B_0 e^{kt}$ and solve for k using $t = 20 \Rightarrow k = \frac{\ln 2}{20} = 0.0346$ %/min 3. a. $\frac{dy}{dt} = ky, \ k > 0$ b. $y = y_0 e^{kt}$ with $y(0.27) = 2y_0$, so $k = \frac{\ln 2}{0.27} = 2.567$ %/hour c. $\frac{dy}{dt} = cy, \ c < 0$ d. $y = y_0 e^{ct}$ with $y(0.1) = 0.5y_0$, so c = -6.931 %/hour 4. a. $\frac{dR}{dt} = 0.05R$ where *R* is the rodent population b. R(0) = 250c. $R = 250e^{0.05t}$ d. R(365) = 21 billion

5. The solution is $y = y_0 e^{kt}$ and we know $y_1 = y_0 e^{kT}$ so solve for $k = \frac{1}{T} \cdot \ln\left(\frac{y_1}{y_0}\right)$