SOLUTIONS for NATURAL GROWTH PART 1

1.

a. $y=C e^{-t}$
b. $c=20 e^{-0.1 x}$
c. $z=5 e^{3 t}$
2.
a. $\frac{d B}{d t}=k B, k>0$ where B is the bacteria population at time t (min)
b. Steady state is $B=0$ and is unstable
c. $\quad B(0)=B_{0}$ and $B(20)=2 B_{0}$
d. $B=B_{0} e^{k t}$ and solve for k using $t=20 \Rightarrow k=\frac{\ln 2}{20}=0.0346 \% / \mathrm{min}$
3.
a. $\frac{d y}{d t}=k y, k>0$
b. $y=y_{0} e^{k t}$ with $y(0.27)=2 y_{0}$, so $k=\frac{\ln 2}{0.27}=2.567 \% /$ hour
c. $\frac{d y}{d t}=c y, c<0$
d. $y=y_{0} e^{c t}$ with $y(0.1)=0.5 y_{0}$, so $c=-6.931 \% /$ hour
4.
a. $\frac{d R}{d t}=0.05 R$ where R is the rodent population
b. $R(0)=250$
c. $\quad R=250 e^{0.05 t}$
d. $\quad R(365)=21$ billion
5. The solution is $y=y_{0} e^{k t}$ and we know $y_{1}=y_{0} e^{k T}$ so solve for $k=\frac{1}{T} \cdot \ln \left(\frac{y_{1}}{y_{0}}\right)$

