$$(A) \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right| = 0$$

B
$$|a_n| < 1$$
 for all *n*

(c)
$$\sum_{n=1}^{\infty} a_n = 0$$

(b) $\sum_{n=1}^{\infty} na_n$ diverges

(E) $\sum_{n=1}^{\infty} \frac{a_n}{n}$ converges

2. Which of the following series diverge?

I.
$$\sum_{n=0}^{\infty} \left(\frac{\sin 2}{\pi}\right)^n$$
II.
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$$
III.
$$\sum_{n=1}^{\infty} \left(\frac{e^n}{e^n+1}\right)$$

(A) III only

B I and II only

 \bigcirc I and III only

D II and III only

E I, II, and III

E 3.426

3. If
$$f(x) = \sum_{k=1}^{\infty} (\sin^2 x)^k$$
, then $f(1)$ is
(A) 0.369
(B) 0.585
(C) 2.400
(D) 2.426

4. What is the value of $\sum_{n=1}^{\infty} \frac{(-3)^{n+1}}{5^n}$? (A) $-\frac{15}{8}$ (B) $-\frac{9}{8}$ (C) $-\frac{3}{8}$ (D) $\frac{9}{8}$ (E) $\frac{15}{8}$

5. The *n*th term test can be used to determine divergence for which of the following series?

1.
$$\sum_{k=1}^{\infty} \ln\left(\frac{k+1}{k}\right)$$

2.
$$\sum_{k=0}^{\infty} (-1)^k \left(\frac{k}{2k+1}\right)$$

3.
$$\sum_{k=1}^{\infty} \frac{3k^2 - k^3}{5k^3}$$

(A) III only

(B) I and III only

c) II and III only

D I, II, and III

6. Let f be a positive, continuous, decreasing function. If ∫₁[∞] f(x) dx = 5, which of the following statements about the series ∑_{n=1}[∞] f(n) must be true?
(A) ∑_{n=1}[∞] f(n) = 0
(B) ∑_{n=1}[∞] f(n) converges, and ∑_{n=1}[∞] f(n) < 5
(C) ∑_{n=1}[∞] f(n) converges, and ∑_{n=1}[∞] f(n) > 5
(E) ∑_{n=1}[∞] f(n) diverges

AP* OCollegeBoard AP C

Series

7. The integral test can be used to determine that which of the following statements about the infinite series $\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n^2}$ is true?

A The series converges because
$$\int_{1}^{\infty} \frac{e^{\frac{1}{x}}}{x^2} \Box x = -1 + e^{-1}$$

(B) The series converges because
$$\int_{1}^{\infty} \frac{e^{\frac{1}{x}}}{x^{2}} \Box x = e$$
.
(C) The series converges because $\int_{1}^{\infty} \frac{e^{\frac{1}{x}}}{x^{2}} \Box x = 1 - e$.
(D) The series diverges because $\int_{1}^{\infty} \frac{e^{\frac{1}{x}}}{x^{2}} \Box x$ is not finite.

Consider the series
$$\sum_{n=2}^{\infty} \frac{1}{n^p \ln(n)}$$
, where $p \ge 0$.

8. Determine whether the series converges or diverges for p=1. Show your analysis.

Please respond on separate paper, following directions from your teacher.

Part B

1 point is earned for anti derivative

1 point is earned for integral diverges

2 point is earned for conclusion with monotonically decreasing to 0.

Let
$$f(x) = \frac{1}{x \ln x}$$
, so series is $\sum_{2}^{\infty} f(n)$
 $\int_{2}^{\infty} \frac{1}{x \ln x} = \lim_{b \to \infty} \ln |\ln x| |_{2}^{b} = \lim_{b \to \infty} \ln \ln (b) - \ln \ln 2 = \infty$

Since f(x) monotonically decreases to 0, the integral test shows $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ diverges.

0 1 2 3 4

The student response earns four of the following points:

1 point is earned for anti derivative

1 point is earned for integral diverges

2 point is earned for conclusion with monotonically decreasing to 0.

$$Let \ f(x) = rac{1}{x \ln x}, so \ series \ is \ \sum_2^\infty f(n) \ \int\limits_2^\infty rac{1}{x \ln x} = \lim_{b o \infty} \ \ln |\ln x| \ |_2^b = \lim_{b o \infty} \ \ln \ \ln (b) - \ln \ \ln 2 = \infty$$

Since f(x) monotonically decreases to 0, the integral test shows $\sum_{n=1}^{\infty} \frac{1}{n \ln n}$ diverges.

- 9. Which of the following series converge?
 - I. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ II. $\sum_{n=1}^{\infty} \frac{3^n}{n!}$ III. $\sum_{n=1}^{\infty} \left(\frac{e}{\pi}\right)^n$

AP	CollegeBoard AP Calculus AB	Scoring Guide
Ser	ies	
A	None	
В) II only	
c) III only	
D	I and II only	
E) II and III only	~
10.	What are all values of p for which the series $\sum_{n=1}^{\infty} \frac{1}{n^{2p} + n}$ diverges?	

11. For what values of p will both series
$$\sum_{n=1}^{\infty} \frac{1}{n^{2p}}$$
 and $\sum_{n=1}^{\infty} \left(\frac{p}{2}\right)^n$ converges?

(A) -2 only $(B) <math>-\frac{1}{2} only$ $(C) <math>\frac{1}{2} only$ $(D) <math>p < \frac{1}{2}$ and p > 2(E) There are no such values of p. (E) There are no such values of p for which $\int_{1}^{\infty} \frac{1}{x^{2p}} dx$ converges? (A) p < -1(B) p > 0(C) $p > \frac{1}{2}$ (D) p > 1

(E) There are no values of p for which this integral converges.

13. Which of the following is a convergent *p*-series?

AP[.]

14. Which of the following series converge?

$$I.\sum_{n=1}^{\infty} \frac{1}{n^2} \qquad II.\sum_{n=1}^{\infty} \frac{1}{n} \qquad III.\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$$

.

(A) I only

(B) III only

(c) I and II only

D I and III only

 (\mathbf{E}) I, II, and III

15. Which of the following series diverge?

I.
$$\sum_{k=3}^{\infty} \frac{2}{k^2 + 1}$$

II.
$$\sum_{k=1}^{\infty} \left(\frac{6}{7}\right)^k$$

III.
$$\sum_{k=2}^{\infty} \frac{(-1)^k}{k}$$

 $\bigcirc \ \sum_{n=1}^{\infty} \frac{3n}{n^2+2n}$

(D) $\sum_{n=1}^{\infty} \frac{3n^2}{n^3+2n}$

(E) $\sum_{n=1}^{\infty} \frac{3n^2}{n^4+2n}$

Series

A None	~
B II only	
C III only	
D I and III	
E II and III	
16. Which of the following series converges?	
$ (A) \sum_{n=1}^{\infty} \frac{3n}{n+2} $	
$ (B) \ \sum_{n=1}^{\infty} \frac{3n}{n^2+2} $	

17. Which of the following series can be used with the limit comparison test to determine whether the series $\sum_{n=1}^{\infty} \frac{4^n}{5^n - n^2}$ converges or diverges?

AP[°]

18. Which of the following series can be used with the limit comparison test to determine whether the series $\sum_{n=1}^{\infty} \frac{n^2}{n^3 + 1}$ converges or diverges?

 $\textcircled{B} \sum_{n=1}^{\infty} \frac{1}{n^3}$

$$\bigcirc \sum_{n=1}^{\infty} \frac{n}{n+1} \\ \bigcirc \sum_{n=1}^{\infty} \frac{1}{n+1}$$

 $(\mathsf{D}) \sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$

19. Consider the series $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$, where $a_n > 0$ and $b_n > 0$ for $n \ge 1$. If $\sum_{n=1}^{\infty} a_n$ converges, which of the following must be true?

(*) If
$$a_n \le b_n$$
, then $\sum_{n=1}^{\infty} b_n$ converges.
(*) If $a_n \le b_n$, then $\sum_{n=1}^{\infty} b_n$ diverges.
(*) If $b_n \le a_n$, then $\sum_{n=1}^{\infty} b_n$ converges.
(*) If $b_n \le a_n$, then $\sum_{n=1}^{\infty} b_n$ diverges.
(*) If $b_n \le a_n$, then the behavior of $\sum_{n=1}^{\infty} b_n$ cannot be determined from the information given.
(*) If $b_n \le a_n$, then the behavior of $\sum_{n=1}^{\infty} b_n$ cannot be determined from the information given.
(*) If $\sum_{n=1}^{\infty} a_n$ diverges and $0 \le a_n \le b_n$ for all n , which of the following statements must be true?
(*) $\sum_{n=1}^{\infty} (-1)^n a_n$ converges.
(*) $\sum_{n=1}^{\infty} (-1)^n b_n$ converges.
(*) $\sum_{n=1}^{\infty} (-1)^n b_n$ diverges.
(*) $\sum_{n=1}^{\infty} b_n$ converges.
(*) $\sum_{n=1}^{\infty} b_n$ converges.

Let $a_n = \frac{1}{n \ln n}$ for $n \ge 3$.

21. Consider the infinite series $\sum_{n=3}^{\infty} (-1)^{n+1} a_n = \frac{1}{3 \ln 3} - \frac{1}{4 \ln 4} + \frac{1}{5 \ln 5} - \cdots$. Identify the properties of this series that guarantee the series coverage. Explain why the sum of this series is less than $\frac{1}{3}$.

Please respond on separate paper, following directions from your teacher.

Part B

The response can earn up to 2 points: 1 point: properties 1 point: explanation

The terms in this alternating series decrease in absolute value and $\lim n \to \infty 1$ nlnn =0. Therefore, the Alternating Series Test guarantees that this series converges. Furthermore,

 $\frac{1}{3In \ 3} - \frac{1}{4In \ 4} < Sum < \frac{1}{3In \ 3} < \frac{1}{3}$

Therefore, the sum of the series is less than 1 3.

		\checkmark		
0	1	2		

The response can earn up to 2 points:

1 point: properties

1 point: explanation

The terms in this alternating series decrease in absolute value and $\lim n \to \infty 1$ nlnn =0. Therefore, the Alternating Series Test guarantees that this series converges. Furthermore,

$$\frac{1}{3In \ 3} - \frac{1}{4In \ 4} < Sum < \frac{1}{3In \ 3} < \frac{1}{3}$$

Therefore, the sum of the series is less than 13.

22. The power series $\sum_{n=1}^{\infty} \frac{(x-5)^n}{2^n n^2}$ has radius of convergence 2. At which of the following values of x can the alternating series test be used with this series to verify convergence at x 2.

alternating series test be used with this series to verify convergence at x?

A 6	
B 4	~
© 2	
D 0	
E -1	

23. Which of the following statements are true about the series $\sum_{n=2}^{\infty} a_n$, where $a_n = \frac{(-1)^n}{\sqrt{n} + (-1)^n}$?

I. The series is alternating. II. $|a_{n+1}| \le |a_n|$ for all $n \ge 2$

 $\lim_{n \to \infty} a_n = 0$

A) None

B I only

C I and II only

D I and III only

 (\mathbf{E}) I, II, and III

The alternating series test can be used to show convergence for which of the following series? 24.

$$1. 1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \frac{1}{25} - \frac{1}{36} + \dots + a_n + \dots, \text{ where } a_n = (-1)^{n+1} \frac{1}{n^2}$$

$$2. \sin 1 - \frac{\sin 2}{4} + \frac{\sin 3}{9} - \frac{\sin 4}{16} + \frac{\sin 5}{25} - \frac{\sin 6}{36} + \dots + b_n + \dots, \text{ where } b_n = (-1)^{n+1} \frac{\sin n}{n^2}$$

$$3. \frac{1}{\sqrt{2}+1} - \frac{1}{\sqrt{2}-1} + \frac{1}{\sqrt{3}+1} - \frac{1}{\sqrt{3}-1} + \frac{1}{\sqrt{4}+1} - \frac{1}{\sqrt{4}-1} + \dots + c_n + \dots,$$
where $c_n = \begin{cases} \frac{1}{\sqrt{k+1}+1} & \text{if } n = 2k - 1 \\ -\frac{1}{\sqrt{k+1}-1} & \text{if } n = 2k \end{cases}$

A I only

́в) II only

c I and II only

I and III only (D)

Which of the following series converges for all real numbers x? 25.

(A)
$$\sum_{n=1}^{\infty} \frac{x^n}{n}$$

(B) $\sum_{n=1}^{\infty} \frac{x^n}{n^2}$

$$\bigcirc \sum_{n=1}^{\infty} \frac{x^n}{\sqrt{n}}$$

$$\begin{array}{|c|c|c|c|c|} \hline \textbf{D} & \sum_{n=1}^{\infty} \frac{e^n x^n}{n!} \\ \hline \hline \textbf{E} & \sum_{n=1}^{\infty} \frac{n! x^n}{e^n} \end{array} \end{array}$$

AP^{*} **CollegeBoard** AP Calculus AB

Series

I.
$$\sum_{n=1}^{\infty} \frac{8^n}{n!}$$

II. $\sum_{n=1}^{\infty} \frac{n!}{n^{100}}$
III. $\sum_{n=1}^{\infty} \frac{n+1}{(n)(n+2)(n+3)}$

(A) I only

(B) II only

(c) III only

D I and III only

 (\mathbf{E}) I, II, and III

(A) All x except x = 0

 $\bigcirc |x| = 3$

 $\bigcirc -3 \le x \le 3$

(E) The series diverges for all x.

28. What are all positive values of p for which the series $\sum_{n=1}^{\infty} \frac{n^p}{4^n}$ will converge?

B 0 only

 $\bigcirc p > 1$ only

- **(D)** There are no positive values of p for which the series will converge.
- 29. Consider the series $\sum_{n=1}^{\infty} \frac{e^n}{n!}$. If the ratio test is applied to the series, which of the following inequalities results, implying that the series converges?

 $\underbrace{\mathsf{E}}_{n\to\infty} \lim_{n\to\infty} \frac{e}{(n+1)!} < 1$

AP[.] ∲ CollegeBoard

Series

Which of the following series are conditionally convergent? 30.

i.
$$\sum_{n=1}^{\infty} \frac{(-1)^n}{n}$$

ii. $\sum_{n=1}^{\infty} \frac{(-1)^n}{n^3}$
iii. $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt{n}}$

I only

I and II only в)

c) I and III only

(D) II and III only

For what values of p is the series $\sum_{n=1}^{\infty} \frac{(-1)^n n}{n^p + 2}$ conditionally convergent? 31.

0

(B) p > 1

1 only

D p > 2 only

Let f be the function given by $f(x) = e^{-2x^2}$.

32. Let g be the function given by the sum of the first four nonzero terms of the power series for f(x) about x=0. Show that |f(x)-g(x)| < 0.02 for $-0.6 \le x \le 0.6$.

Please respond on separate paper, following directions from your teacher.

Part C

1 point is earned for correctly alternating series bound of $\frac{16x^8}{4!}$

$$f(x) - g(x) = rac{16x^8}{4!} - rac{32x^{16}}{5!} + \cdots$$

1 point is earned for correctly using x = 0.6

This is an alternating series for each *x*, since powers of *x* are even.

Also, $\left|\frac{a_n+1}{a_n}\right| = \frac{2}{n+1}x^2 < 1$ for $-0.6 \le x \le 0.6$ so terms are decreasing in absolute value

1 point is used for the correct conclusion

Thus
$$\left| f(x) - g(x) \right| \le rac{16x^8}{4!} \le rac{16(0.6)^8}{4!}$$

= 0.011 · · · < 0.02

			\checkmark
0	1	2	3

The student response earns three of the following points:

1 point is earned for correctly alternating series bound of $\frac{16x^8}{4!}$

$$f(x) - g(x) = rac{16x^8}{4!} - rac{32x^{16}}{5!} + \cdots$$

1 point is earned for correctly using x = 0.6

This is an alternating series for each x, since powers of x are even.

Also, $\left|\frac{a_n+1}{a_n}\right| = \frac{2}{n+1}x^2 < 1$ for $-0.6 \le x \le 0.6$ so terms are decreasing in absolute value

1 point is used for the correct conclusion

AP^{*}

Thus
$$\left| f(x) - g(x) \right| \le \frac{16x^8}{4!} \le \frac{16(0.6)^8}{4!}$$

= 0.011 · · · < 0.02

33. The Taylor series for a function f about x = 0 is given by $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2n+1)!} x^{2n}$ and converges to f for all real numbers x. If the fourth-degree Taylor polynomial for f about x = 0 is used to approximate $f(\frac{1}{2})$ alternating series error bound?

The function f is defined by the power series

$$f\left(x
ight)=\sum_{n=0}^{\infty}rac{\left(-1
ight)^{n}x^{2n}}{\left(2n+1
ight)!}=1-rac{x^{2}}{3!}+rac{x^{4}}{5!}-rac{x^{6}}{7!}+\dots+rac{\left(-1
ight)^{n}x^{2n}}{\left(2n+1
ight)!}+\dots$$

for all real numbers x.

34. Show that $1 - \frac{1}{3!}$ approximates f(1) with error less than $\frac{1}{100}$.

Please respond on separate paper, following directions from your teacher.

Part B

1 point is earned for correctly showing error bound $<\frac{1}{100} f(1) = 1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \dots + \frac{(-1)^n}{(2n+1)!} + \dots$

This is an alternating series whose terms decrease in absolute value with limit 0. Thus, the error is less than the first

AP OclegeBoard

Series

omitted term, so
$$\left| f(1) - (1 - \frac{1}{3!}) \right| \le \frac{1}{5!} = \frac{1}{120} < \frac{1}{100}$$
.

The student response earns one of the following points:

0

1 point is earned for correctly showing error bound $< \frac{1}{100}$

$$f(1) = 1 - rac{1}{3!} + rac{1}{5!} - rac{1}{7!} + ... + rac{(-1)^n}{(2n+1)!} + ...$$

This is an alternating series whose terms decrease in absolute value with limit 0. Thus, the error is less than the first omitted term, so $|f(1) - (1 - \frac{1}{3!})| \le \frac{1}{5!} = \frac{1}{120} < \frac{1}{100}$.

1

35. If the series $\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{2n+1}$ is approximated by the partial sum with 15 terms, what is the alternating series error bound?

- $(A) \frac{1}{15}$
- $\bigcirc B \quad \frac{1}{16}$
- (c) $\frac{1}{31}$

$$\bigcirc \frac{1}{33}$$