## Series

1. If the series $\sum_{n=1}^{\infty} a_{n}$ converges and $a_{n}>0$ for all $n$, which of the following must be true?
(A) $\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=0$
(B) $\left|a_{n}\right|<1$ for all $n$
(C) $\sum_{n=1}^{\infty} a_{n}=0$
(D) $\sum_{n=1}^{\infty} n a_{n}$ diverges
(E) $\sum_{n=1}^{\infty} \frac{a_{n}}{n}$ converges
2. Which of the following series diverge?
I. $\sum_{n=0}^{\infty}\left(\frac{\sin 2}{\pi}\right)^{n}$
II. $\sum_{n=1}^{\infty} \frac{1}{\sqrt[3]{n}}$
III. $\sum_{n=1}^{\infty}\left(\frac{e^{n}}{e^{n}+1}\right)$
(A) III only

B I and II only
(C) I and III only

D II and III only
(E) I, II, and III

## Series

3. 目 If $f(x)=\sum_{k=1}^{\infty}\left(\sin ^{2} x\right)^{k}$, then $f(1)$ is
(A) 0.369
(B) 0.585
(C) 2.400
(D) 2.426
(E) 3.426
4. What is the value of $\sum_{n=1}^{\infty} \frac{(-3)^{n+1}}{5^{n}}$ ?
(A) $-\frac{15}{8}$
(B) $-\frac{9}{8}$
(C) $-\frac{3}{8}$
(D) $\frac{9}{8}$
(E) $\frac{15}{8}$

## Series

5. The $n$th term test can be used to determine divergence for which of the following series?
6. $\sum_{k=1}^{\infty} \ln \left(\frac{k+1}{k}\right)$
7. $\sum_{k=0}^{\infty}(-1)^{k}\left(\frac{k}{2 k+1}\right)$
8. $\sum_{k=1}^{\infty} \frac{3 k^{2}-k^{3}}{5 k^{3}}$
(A) III only

B I and III only

C II and III only
(D) I, II, and III
6. Let f be a positive, continuous, decreasing function. If $\int_{1}^{\infty} f(x) d x=5$, which of the following statements about the series $\sum_{n=1}^{\infty} f(n)$ must be true?
(A) $\sum_{n=1}^{\infty} f(n)=0$
(B) $\sum_{n=1}^{\infty} f(n)$ converges, and $\sum_{n=1}^{\infty} f(n)<5$
(C) $\sum_{n=1}^{\infty} f(n)=5$
(D) $\sum_{n=1}^{\infty} f(n)$ converges, and $\sum_{n=1}^{\infty} f(n)>5$
(E) $\sum_{n=1}^{\infty} f(n)$ diverges

## Series

7. The integral test can be used to determine that which of the following statements about the infinite series $\sum_{n=1}^{\infty} \frac{e^{\frac{1}{n}}}{n^{2}}$ is true?
(A) The series converges because $\int_{1}^{\infty} \frac{e^{\frac{1}{x}}}{x^{2}} \square x=-1+e$.
(B) The series converges because $\int_{1}^{\infty} \frac{e^{\frac{1}{x}}}{x^{2}} \square x=e$.
(C) The series converges because $\int_{1}^{\infty} \frac{e^{\frac{1}{x}}}{x^{2}} \square x=1-e$.
(D) The series diverges because $\int_{1}^{\infty} \frac{e^{\frac{1}{x}}}{x^{2}} \square x$ is not finite.

Consider the series $\sum_{n=2}^{\infty} \frac{1}{n^{p} \ln (n)}$, where $p \geq 0$.
8. Determine whether the series converges or diverges for $p=1$. Show your analysis.

Please respond on separate paper, following directions from your teacher.

## Part B

1 point is earned for anti derivative
1 point is earned for integral diverges
2 point is earned for conclusion with monotonically decreasing to 0 .

Let $f(x)=\frac{1}{x \ln x}$, so series is $\sum_{2}^{\infty} f(n)$
$\int_{2}^{\infty} \frac{1}{x \ln x}=\left.\lim _{b \rightarrow \infty} \ln |\ln x|\right|_{2} ^{b}=\lim _{b \rightarrow \infty} \ln \ln (b)-\ln \ln 2=\infty$
Since $\mathrm{f}(\mathrm{x})$ monotonically decreases to 0 , the integral test shows $\sum_{2}^{\infty} \frac{1}{n \ln n}$ diverges.

## Series

| 0 | 1 | 2 | 3 | 4 |
| :--- | :--- | :--- | :--- | :--- |

The student response earns four of the following points:
1 point is earned for anti derivative
1 point is earned for integral diverges
2 point is earned for conclusion with monotonically decreasing to 0 .

Let $f(x)=\frac{1}{x \ln x}$, so series is $\sum_{2}^{\infty} f(n)$
$\int_{2}^{\infty} \frac{1}{x \ln x}=\left.\lim _{b \rightarrow \infty} \ln |\ln x|\right|_{2} ^{b}=\lim _{b \rightarrow \infty} \ln \ln (b)-\ln \ln 2=\infty$
Since $\mathrm{f}(\mathrm{x})$ monotonically decreases to 0 , the integral test shows $\sum_{2}^{\infty} \frac{1}{n \ln n}$ diverges.
9. Which of the following series converge?
I. $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
II. $\sum_{n=1}^{\infty} \frac{3^{n}}{n!}$
III. $\sum_{n=1}^{\infty}\left(\frac{e}{\pi}\right)^{n}$

## Series

(A) None
(B) II only
(C) III only
(D) I and II only
(E) II and III only
10. What are all values of p for which the series $\sum_{n=1}^{\infty} \frac{1}{n^{2 p}+n}$ diverges?
(A) $p \leq 1 / 2$
(B) $p<1 / 2$ only
(C) $p \geq 1 / 2$
(D) $\mathrm{p}>1 / 2$ only
(E) The series diverges for all p .
11. For what values of $p$ will both series $\sum_{n=1}^{\infty} \frac{1}{n^{2 p}}$ and $\sum_{n=1}^{\infty}\left(\frac{p}{2}\right)^{n}$ converges?

## Series

(A) $-2<p<2$ only
(B) $-\frac{1}{2}<p<\frac{1}{2}$ only
(C) $\frac{1}{2}<p<2$ only
(D) $p<\frac{1}{2}$ and $p>2$
(E) There are no such values of $p$.
12. What are all values of $p$ for which $\int_{1}^{\infty} \frac{1}{x^{2 p}} d x$ converges?
(A) $p<-1$
(B) $p>0$
(C) $p>\frac{1}{2}$
(D) $p>1$
(E) There are no values of $p$ for which this integral converges.
13. Which of the following is a convergent $p_{\text {-series? }}$

## Series

(A) $\sum_{n=1}^{\infty} n^{3}$
(B) $\sum_{n=1}^{\infty}\left(\frac{1}{3}\right)^{n}$
(C) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$
(D) $\sum_{n=1}^{\infty}\left(\frac{1}{\sqrt{n}}\right)^{3}$
14. Which of the following series converge?
I. $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$
II. $\sum_{n=1}^{\infty} \frac{1}{n}$
III. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
(A) I only
(B) III only
(C) I and II only

D I and III only
(E) I, II, and III
15. Which of the following series diverge?
I. $\sum_{k=3}^{\infty} \frac{2}{k^{2}+1}$
II. $\sum_{k=1}^{\infty}\left(\frac{6}{7}\right)^{k}$
III. $\sum_{k=2}^{\infty} \frac{(-1)^{k}}{k}$

## Series

## (A) None

(B) II only
(C) III only
(D) I and III
(E) II and III
16. Which of the following series converges?
(A) $\sum_{n=1}^{\infty} \frac{3 n}{n+2}$
(B) $\sum_{n=1}^{\infty} \frac{3 n}{n^{2}+2}$
(C) $\sum_{n=1}^{\infty} \frac{3 n}{n^{2}+2 n}$
(D) $\sum_{n=1}^{\infty} \frac{3 n^{2}}{n^{3}+2 n}$
(E) $\sum_{n=1}^{\infty} \frac{3 n^{2}}{n^{4}+2 n}$
17. Which of the following series can be used with the limit comparison test to determine whether the series $\sum_{n=1}^{\infty} \frac{4^{n}}{5^{n}-n^{2}}$ converges or diverges?

## Series

(A) $\sum_{n=1}^{\infty} \frac{1}{n}$
(B) $\sum_{n=1}^{\infty} \frac{1}{4^{n}}$
(C) $\sum_{n=1}^{\infty} \frac{1}{5^{n}}$
(D) $\sum_{n=1}^{\infty}\left(\frac{4}{5}\right)^{n}$
18. Which of the following series can be used with the limit comparison test to determine whether the series $\sum_{n=1}^{\infty} \frac{n^{2}}{n^{3}+1}$ converges or diverges?
(A) $\sum_{n=1}^{\infty} \frac{1}{n}$
(B) $\sum_{n=1}^{\infty} \frac{1}{n^{3}}$
(C) $\sum_{n=1}^{\infty} \frac{n}{n+1}$
(D) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+1}$
19. Consider the series $\sum_{n=1}^{\infty} a_{n}$ and $\sum_{n=1}^{\infty} b_{n}$, where $a_{n}>0$ and $b_{n}>0$ for $n \geq 1$. If $\sum_{n=1}^{\infty} a_{n}$ converges, which of the following must be true?

## Series

(A) If $a_{n} \leq b_{n}$, then $\sum_{n=1}^{\infty} b_{n}$ converges.
(B) If $a_{n} \leq b_{n}$, then $\sum_{n=1}^{\infty} b_{n}$ diverges.
(C) If $b_{n} \leq a_{n}$, then $\sum_{n=1}^{\infty} b_{n}$ converges.
(D) If $b_{n} \leq a_{n}$, then $\sum_{n=1}^{\infty} b_{n}$ diverges.
(E) If $b_{n} \leq a_{n}$, then the behavior of $\sum_{n=1}^{\infty} b_{n}$ cannot be determined from the information given.
20. If $\sum_{n=1}^{\infty} a_{n}$ diverges and $0 \leq a_{n} \leq b_{n}$ for all $n$, which of the following statements must be true?
(A) $\sum_{n=1}^{\infty}(-1)^{n} a_{n}$ converges.
(B) $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ converges.
(C) $\sum_{n=1}^{\infty}(-1)^{n} b_{n}$ diverges.
(D) $\sum_{n=1}^{\infty} b_{n}$ converges.
(E) $\sum_{n=1}^{\infty} b_{n}$ diverges.

Let $a_{n}=\frac{1}{n \ln n}$ for $n \geq 3$.
21. Consider the infinite series $\sum_{n=3}^{\infty}(-1)^{n+1} a_{n}=\frac{1}{3 \ln 3}-\frac{1}{4 \ln 4}+\frac{1}{5 \ln 5}-\cdots$. Identify the properties of this series that guarantee the series coverage. Explain why the sum of this series is less than $\frac{1}{3}$.

## Series

## Please respond on separate paper, following directions from your teacher.

## Part B

The response can earn up to 2 points:
1 point: properties
1 point: explanation

The terms in this alternating series decrease in absolute value and $\lim n \rightarrow \infty 1$ nlnn $=0$. Therefore, the Alternating Series Test guarantees that this series converges. Furthermore,
$\frac{1}{3 \operatorname{In} 3}-\frac{1}{4 \operatorname{In} 4}<\operatorname{Sum}<\frac{1}{3 \operatorname{In} 3}<\frac{1}{3}$
Therefore, the sum of the series is less than 13.

| 0 | 1 | 2 |
| :--- | :--- | :--- |

The response can earn up to 2 points:
1 point: properties
1 point: explanation

The terms in this alternating series decrease in absolute value and $\lim n \rightarrow \infty 1$ nlnn $=0$. Therefore, the Alternating Series Test guarantees that this series converges. Furthermore,
$\frac{1}{3 \operatorname{In} 3}-\frac{1}{4 \operatorname{In} 4}<\operatorname{Sum}<\frac{1}{3 \operatorname{In} 3}<\frac{1}{3}$
Therefore, the sum of the series is less than 13.
22. The power series $\sum_{n=1}^{\infty} \frac{(x-5)^{n}}{2^{n} n^{2}}$ has radius of convergence 2 . At which of the following values of $x$ can the alternating series test be used with this series to verify convergence at $x$ ?

## Series

(A) 6
(B) 4
(C) 2
(D) 0
(E) -1
23. Which of the following statements are true about the series $\sum_{n=2}^{\infty} a_{n}$, where $a_{n}=\frac{(-1)^{n}}{\sqrt{n}+(-1)^{n}}$ ?
I. The series is alternating.
II. $\left|a_{n+1}\right| \leq\left|a_{n}\right|$ for all $n \geq 2$
III. $\lim _{n \rightarrow \infty} a_{n}=0$
(A) None
(B) I only
(C) I and II only

D I and III only
(E) I, II, and III

## Series

24. The alternating series test can be used to show convergence for which of the following series?
$1.1-\frac{1}{4}+\frac{1}{9}-\frac{1}{16}+\frac{1}{25}-\frac{1}{36}+\cdots+a_{n}+\cdots$, where $a_{n}=(-1)^{n+1} \frac{1}{n^{2}}$
25. $\sin 1-\frac{\sin 2}{4}+\frac{\sin 3}{9}-\frac{\sin 4}{16}+\frac{\sin 5}{25}-\frac{\sin 6}{36}+\cdots+b_{n}+\cdots$, where $b_{n}=(-1)^{n+1} \frac{\sin n}{n^{2}}$
26. $\frac{1}{\sqrt{2}+1}-\frac{1}{\sqrt{2}-1}+\frac{1}{\sqrt{3}+1}-\frac{1}{\sqrt{3}-1}+\frac{1}{\sqrt{4}+1}-\frac{1}{\sqrt{4}-1}+\cdots+c_{n}+\cdots$,
where $c_{n}= \begin{cases}\frac{1}{\sqrt{k+1}+1} & \text { if } n=2 k-1 \\ -\frac{1}{\sqrt{k+1}-1} & \text { if } n=2 k\end{cases}$
(A) I only
(B) II only
(C) I and II only

D I and III only
25. Which of the following series converges for all real numbers $x$ ?
(A) $\sum_{n=1}^{\infty} \frac{x^{n}}{n}$
(B) $\sum_{n=1}^{\infty} \frac{x^{n}}{n^{2}}$
(C) $\sum_{n=1}^{\infty} \frac{x^{n}}{\sqrt{n}}$
(D) $\sum_{n=1}^{\infty} \frac{e^{n} x^{n}}{n!}$
(E) $\sum_{n=1}^{\infty} \frac{n!x^{n}}{e^{n}}$

## Series

26. Which of the following series converge?
I. $\sum_{n=1}^{\infty} \frac{8^{n}}{n!}$
II. $\sum_{n=1}^{\infty} \frac{n!}{n^{100}}$
III. $\sum_{n=1}^{\infty} \frac{n+1}{(n)(n+2)(n+3)}$
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III
27. What are all values of $x$ for which the series $\sum_{n=1}^{\infty} \frac{n 3^{n}}{x^{n}}$ converges?
(A) All $x$ except $x=0$
(B) $|x|=3$
(C) $-3 \leq x \leq 3$
(D) $|x|>3$
(E) The series diverges for all $x$.

## Series

28. What are all positive values of $p$ for which the series $\sum_{n=1}^{\infty} \frac{n^{p}}{4^{n}}$ will converge?
(A) $p>0$
(B) $0<p<4$ only
(C) $p>1$ only

D There are no positive values of $p$ for which the series will converge.
29. Consider the series $\sum_{n=1}^{\infty} \frac{e^{n}}{n!}$. If the ratio test is applied to the series, which of the following inequalities results, implying that the series converges?
(A) $\lim _{n \rightarrow \infty} \frac{e}{n!}<1$
(B) $\lim _{n \rightarrow \infty} \frac{n!}{e}<1$
(C) $\lim _{n \rightarrow \infty} \frac{n+1}{e}<1$
(D) $\lim _{n \rightarrow \infty} \frac{e}{n+1}<1$
(E) $\lim _{n \rightarrow \infty} \frac{e}{(n+1)!}<1$

## Series

30. Which of the following series are conditionally convergent?
i. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$
ii. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}}$
iii. $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n}}$
(A) I only
(B) I and II only
C. I and III only
(D) II and III only
31. For what values of $p$ is the series $\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{n^{p}+2}$ conditionally convergent?
(A) $0<p \leq 1$
(B) $p>1$
(C) $1<p \leq 2$ only
(D) $p>2$ only

Let $f$ be the function given by $f(x)=e^{-2 x^{2}}$.
32. Let $g$ be the function given by the sum of the first four nonzero terms of the power series for $f(x)$ about $x=0$. Show that $|f(x)-g(x)|<0.02$ for $-0.6 \leq x \leq 0.6$.

## Series

## Please respond on separate paper, following directions from your teacher.

## Part C

1 point is earned for correctly alternating series bound of $\frac{16 x^{8}}{4!}$
$f(x)-g(x)=\frac{16 x^{8}}{4!}-\frac{32 x^{16}}{5!}+\cdots$
1 point is earned for correctly using $x=0.6$
This is an alternating series for each $x$, since powers of $x$ are even.
Also, $\left|\frac{a_{n}+1}{a_{n}}\right|=\frac{2}{n+1} x^{2}<1$ for $-0.6 \leq x \leq 0.6$ so terms are decreasing in absolute value
1 point is used for the correct conclusion
Thus $|f(x)-g(x)| \leq \frac{16 x^{8}}{4!} \leq \frac{16(0.6)^{8}}{4!}$

$$
=0.011 \cdots<0.02
$$

| 0 | 1 | 2 | 3 |
| :--- | :--- | :--- | :--- |

The student response earns three of the following points:
1 point is earned for correctly alternating series bound of $\frac{16 x^{8}}{4!}$
$f(x)-g(x)=\frac{16 x^{8}}{4!}-\frac{32 x^{16}}{5!}+\cdots$
1 point is earned for correctly using $x=0.6$
This is an alternating series for each $x$, since powers of $x$ are even.
Also, $\left|\frac{a_{n}+1}{a_{n}}\right|=\frac{2}{n+1} x^{2}<1$ for $-0.6 \leq x \leq 0.6$ so terms are decreasing in absolute value
1 point is used for the correct conclusion

## Series

Thus $|f(x)-g(x)| \leq \frac{16 x^{8}}{4!} \leq \frac{16(0.6)^{8}}{4!}$

$$
=0.011 \cdots<0.02
$$

33. The Taylor series for a function $f$ about $x=0$ is given by $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{(2 n+1)!} x^{2 n}$ and converges to $f$ for all real numbers $x$. If the fourth-degree Taylor polynomial for $f$ about $x=0$ is used to approximate $f\left(\frac{1}{2}\right)$ alternating series error bound?
(A) $\frac{1}{2^{4.5!}}$
(B) $\frac{1}{2^{5} \cdot 6!}$
(C) $\frac{1}{2^{6} \cdot 7!}$
(D) $\frac{1}{2^{10} \cdot 11!}$

The function $f$ is defined by the power series
$f(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n}}{(2 n+1)!}=1-\frac{x^{2}}{3!}+\frac{x^{4}}{5!}-\frac{x^{6}}{7!}+\cdots+\frac{(-1)^{n} x^{2 n}}{(2 n+1)!}+\cdots$
for all real numbers $x$.
34. Show that $1-\frac{1}{3!}$ approximates $f(1)$ with error less than $\frac{1}{100}$.

Please respond on separate paper, following directions from your teacher.

## Part B

1 point is earned for correctly showing error bound $<\frac{1}{100} f(1)=1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\ldots+\frac{(-1)^{n}}{(2 n+1)!}+\ldots$
This is an alternating series whose terms decrease in absolute value with limit 0 . Thus, the error is less than the first

## Series

omitted term, so $\left|f(1)-\left(1-\frac{1}{3!}\right)\right| \leq \frac{1}{5!}=\frac{1}{120}<\frac{1}{100}$.
$0 \quad \square 1$

The student response earns one of the following points:
1 point is earned for correctly showing error bound $<\frac{1}{100}$
$f(1)=1-\frac{1}{3!}+\frac{1}{5!}-\frac{1}{7!}+\ldots+\frac{(-1)^{n}}{(2 n+1)!}+\ldots$
This is an alternating series whose terms decrease in absolute value with limit 0 . Thus, the error is less than the first omitted term, so $\left|f(1)-\left(1-\frac{1}{3!}\right)\right| \leq \frac{1}{5!}=\frac{1}{120}<\frac{1}{100}$.
35. If the series $\sum_{n=1}^{\infty}(-1)^{n+1} \frac{1}{2 n+1}$ is approximated by the partial sum with 15 terms, what is the alternating series error bound?
(A) $\frac{1}{15}$
(B) $\frac{1}{16}$
(C) $\frac{1}{31}$
(D) $\frac{1}{33}$

