Function Compositions: Understanding Practice 1

Goal: Be able to justify how the domain and range change after a composition.

Consider the functions:

$$
f: A \rightarrow B \quad \text { and } \quad g: C \rightarrow D
$$

Where $B \neq C$ and we want to look at the composition $g \circ f=h$
Case 1 Practice: $B \subset C(B$ is a subset of $C)$

1. Use pictures to justify why the domain of h is A and the range is a subset of D.
2. Consider an example where $g: \mathbb{R} \rightarrow \mathbb{R}$, for this example we want a function whose range is a subset of the domain of g (which is \mathbb{R}). Let's use $f: \mathbb{R} \rightarrow[1, \infty)$. Note that $[1, \infty) \subset \mathbb{R}$

If $g: x \mapsto 3 x-5$ what is the domain and range of h ?
3. Why do we not need to know what f does explicitly to determine the domain and range of h ?
4. Let's do another example, $g: \mathbb{R} \rightarrow \mathbb{R}$ where $g: x \mapsto 2 x^{3}+1$ and this time $f:[0, \infty) \rightarrow(0,1]$. What is the domain and range of h ?
(The domain of f is $\{x \mid x \geq 0\}$, the range is $\{y \mid 0<y \leq 1\}$)
5. Make an example of two functions f and g that fit in this case. Use mapping notation to describe the functions and then determine the domain and range of h.

Case 2 Practice: $C \subset B(C$ is a subset of $B)$
6. Use pictures to justify why the range of h is D and the domain is a subset of A.
7. Let's start with an easy example of $f: \mathbb{R} \rightarrow \mathbb{R}$ and now we need a function whose domain is a subset of the range of f (a subset of \mathbb{R}). Let's just say that $g:[0, \infty) \rightarrow \mathbb{R}$.

If $f: x \mapsto-\frac{1}{2} x+6$ then what is the domain and range of h ?
8. Again, let's define a function $f: \mathbb{R} \rightarrow \mathbb{R}$ and make $g:[0,10) \rightarrow\{0,1\}$. If $f: x \mapsto \frac{1}{x}, x \neq 0$ and $f: 0 \mapsto 0$ then what is the domain and range of h ?
9. Make an example of two function f and g that fit in this case. Use mapping notation to describe the functions and then determine the domain and range of h.

Case 3: Neither B nor C is a subset of the other.
10. Use pictures to justify why the range of h is a subset of D and the domain is a subset of A.
11. For an example we need f to have a restricted range and g to have a restricted domain where there is overlap between the two. Consider $f: x \mapsto x^{2}$ and $g: x \mapsto \sqrt{4-x}$. Here we have $f: \mathbb{R} \rightarrow[0, \infty)$ and $g:(-\infty, 4] \rightarrow[0, \infty)$. What is the intersection of the range of f and the domain of g ?

Use the intersection to determine the range of h.

Use the intersection to determine the domain of h.
12. For another example, let's consider $f: \mathbb{R} \rightarrow[-2, \infty)$ and $g:(-\infty, 5) \rightarrow(0, \infty)$ where $f: x \mapsto|x|-2$ and $g: x \mapsto \frac{1}{\sqrt{5-x}}$

Determine the domain and range of h.
13. Make an example of two functions $f: A \rightarrow B$ and $g: C \rightarrow D$ such that the domain and range of $g \circ f$ is A and D respectively, but the domain of $f \circ g$ is just $\{1\}$ (the number 1) and the range is just $\{2\}$ (the number 2).

