Unit 1: Functions

since we

Function Compositions: Understanding Practice 1

Goal: Be able to justify how the domain and range change after a composition.

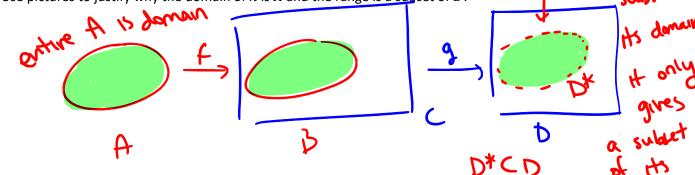
Consider the functions:

$$f: A \to B$$
 and $g: C \to D$

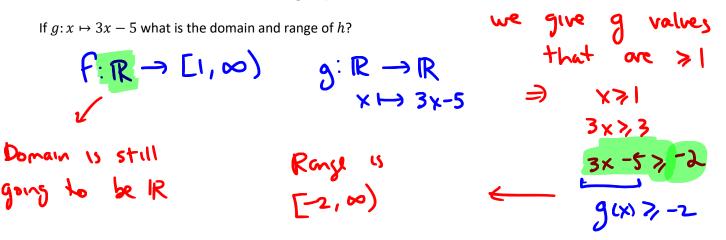
Where $B \neq C$ and we want to look at the composition $g \circ f = h$

Case 1 Practice: $B \subset C$ (*B* is a subset of *C*)

1. Use pictures to justify why the domain of *h* is *A* and the range is a subset of *D*.

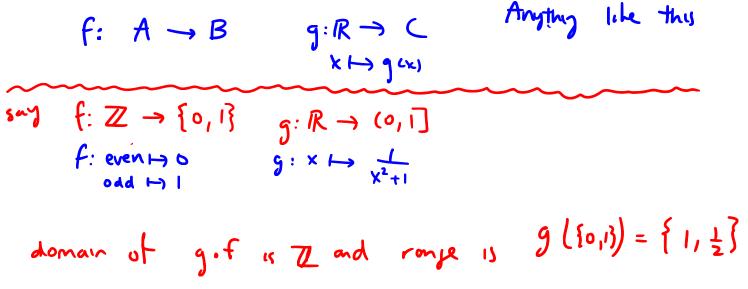


2. Consider an example where $g: \mathbb{R} \to \mathbb{R}$, for this example we want a function whose range is a subset of the **v**



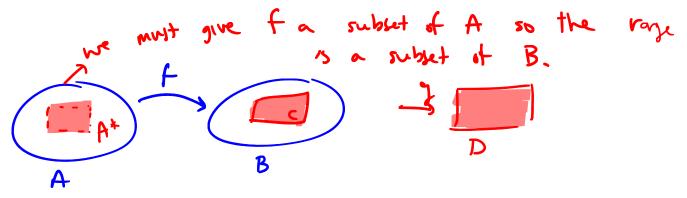
3. Why do we not need to know what f does explicitly to determine the domain and range of h?

- 4. Let's do another example, $g: \mathbb{R} \to \mathbb{R}$ where $g: x \mapsto 2x^3 + 1$ and this time $f: [0, \infty) \to (0,1]$. What is the domain and range of h? (The domain of f is $\{x \mid x \ge 0\}$, the range is $\{y \mid 0 < y \le 1\}$) x € (0,1) = O<x≤1 g:R→R 0,00). 5 (0,17 $0 < x^3 \leq 1$ $x \mapsto 2x^3 + 1$ 0 < 2 x3 < 2 This is since to $1 < 2x^{3} + 1 \leq 3$ un changed 1< 9(x) <3 **IS** Domains New forge [0,00) still 50 (1.3)
 - 5. Make an example of two functions f and g that fit in this case. Use mapping notation to describe the functions and then determine the domain and range of h.

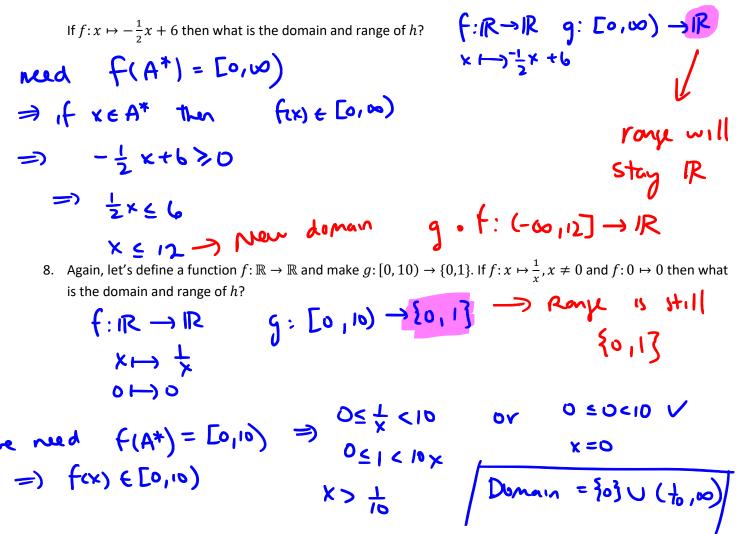


Case 2 Practice: $C \subset B$ (*C* is a subset of *B*)

6. Use pictures to justify why the range of *h* is *D* and the domain is a subset of *A*.



7. Let's start with an easy example of $f: \mathbb{R} \to \mathbb{R}$ and now we need a function whose domain is a subset of the range of f (a subset of \mathbb{R}). Let's just say that $g: [0, \infty) \to \mathbb{R}$.

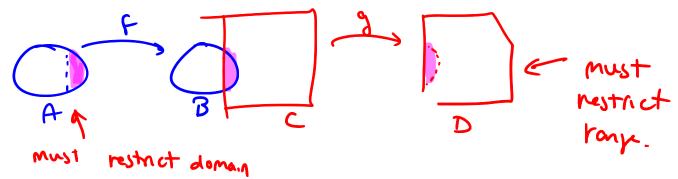


9. Make an example of two function f and g that fit in this case. Use mapping notation to describe the functions and then determine the domain and range of *h*. ..

. .

Case 3: Neither *B* nor *C* is a subset of the other.

10. Use pictures to justify why the range of *h* is a subset of *D* and the domain is a subset of *A*.



11. For an example we need f to have a restricted range and g to have a restricted domain where there is overlap between the two. Consider $f: x \mapsto x^2$ and $g: x \mapsto \sqrt{4-x}$. Here we have $f: \mathbb{R} \to [0, \infty)$ and $g: (-\infty, 4] \to [0, \infty)$.

What is the intersection of the range of f and the domain of g?

$$[0,\infty) \cap (-\infty,4] = [0,4]$$

Use the intersection to determine the range of h.

Range is what g takes the intersection to

$$g([0,1]) = b^{x} \Rightarrow if x \in [0,1]$$
 then $g(x) \in b^{x}$
 $0 \le x \le 4 \Rightarrow 0 \ge -x \ge -4 \Rightarrow 4 \ge 4 - x \ge 0$
 $\Rightarrow 2 \ge \sqrt{4-x} \ge 0$
Use the intersection to determine the domain of h.
Domain is what will be sent to $[0,1]$ under f.
If $x \in A^{x} \Rightarrow f(x) \in [0,1]$
 $\Rightarrow 0 \le x^{2} \le 4$
 $\Rightarrow 0 \le 1 \times 1 \le 2$
 $\Rightarrow -2 \le x \le 2$
New Domain is
 $\Rightarrow -2 \le x \le 2$

12. For another example, let's consider $f: \mathbb{R} \to [-2, \infty)$ and $g: (-\infty, 5) \to (0, \infty)$ where $f: x \mapsto |x| - 2$ and $g: x \mapsto \frac{1}{\sqrt{5-x}}$

Determine the domain and range of *h*.

f:
$$(R \rightarrow [-2, \infty)$$
 g: $(-\infty, 5) \rightarrow (0, \infty)$
 $x \mapsto |x|-2$ $x \mapsto \frac{1}{\sqrt{5-x}}$
 \Rightarrow intersection in the middle is $[-2, 5)$
domain A^{+} sit if $x \in A^{+} \Rightarrow f(x) \in [-2, 5)$
 $\Rightarrow -2 \leq |x| - 2 < 5$
 $0 \leq |x| < 7 \Rightarrow -7 < x < 7$
 \Rightarrow New domain $A^{+} = (-7, 7)$
Ronze D^{+} sit if $x \in [-2, 5)$ then $g(x) \in D^{+}$
 $\Rightarrow -2 \leq x < 5$
 $\Rightarrow 2 \Rightarrow -x > -5$
 $\Rightarrow 7 \Rightarrow 5 - x > 0$
 $\Rightarrow \frac{7}{5-x} \Rightarrow 1 > 0$
 $\Rightarrow \frac{1}{5-x} \Rightarrow \frac{1}{7} > 0 \Rightarrow g(x) \ge \sqrt{7}$
New Ronze is $[\sqrt{7}, \infty]$

•

13. Make an example of two functions $f: A \to B$ and $g: C \to D$ such that the domain and range of $g \circ f$ is A and D respectively, but the domain of $f \circ g$ is just {1} (the number 1) and the range is just {2} (the number 2).

