Polynomials: Understanding Practice 3
Goal: Build a better understanding of the graphs of polynomials on a very large scale and a small scale to prepare for calculus. Use remainder theorem and factor theorem with polynomials in $\mathbb{Z}[X]$

When we look at a polynomial

$$
p(x)=a_{n} x^{n}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

For $x \gg 0$ (this means significantly greater than 0) the polynomial will be approximate to the leading term.

$$
p(x) \approx a_{n} x^{n}
$$

This means that $\frac{p(x)}{a_{n} x^{n}} \approx 1$ for large x.

1. Consider the polynomial $p(x)=-3 x^{4}+50 x^{2}-100 x+500$. In desmos or geogebra, write the quotient of $p(x)$ and $-3 x^{4}$ as a function Q and use it to make a table of values for the quotient.

x	1	10	100	1000	10^{6}
$\frac{p(x)}{-3 x^{4}}$	-149	0.85	0.998365	$0.997933 .$.	$0.9999 \ldots$
$\frac{p(x)}{-3 x^{4}}$	$-215 . \overline{6}$	$0.78 \overline{3} .$.	$0.99829 .$.	$0.999983 .$.	$0.9999 .$.

How does the table and the graph show that as $|x| \rightarrow \infty$ we have that $p(x) \rightarrow-3 x^{4}$
as $|x| \rightarrow \infty$ (gets bl y) we have $\frac{p(x)}{-3 x^{4}} \rightarrow 1$
So $p(x) \rightarrow-3 x^{4}$ (if the quotient is 1 them are the some)
2. What would the quotient be if we divided by $-x^{4}$ instead?

$$
\begin{gathered}
\frac{p(x)}{-x^{4}} \longrightarrow 3 \text { juice graph it and se } \\
\text { a horitorital asymptote }
\end{gathered}
$$

3. The percent error of p and the leading term is $\frac{\left|p(x)-a_{n}\right|}{a_{n}}=\left|1-\frac{p(x)}{a_{n}}\right|$, use technology to determine the interval of x when the percent error is less than 0.1%

$$
\text { graph } f(x)=\left|1-\frac{p(x)}{-3 x^{4}}\right|
$$

and $g(x)=0.001$
intersect at $x=128$ and $x=-130$
so want $x>128$ or $x<-130$

4. For large x, what does the polynomial $P(x)=\frac{1}{4} x^{5}+5 x^{4}-30 x^{3}+4000 x$ approximate, and how large does x need to be for the percent error to be less than 0.05%
$P(x) \approx \frac{1}{4} x^{5}$ and the
error is less then 0.05%. when $x>39994$ or

$$
x<-40006
$$

5. Using technology, construct a polynomial that is within 1% of $5 x^{3}$ when $|x|>100$ but the error is greater or equal to 1% if $|x| \leq 100$
used sliders a, b, c to play with

$$
\begin{aligned}
& P(x)=5 x^{3}+a x^{2}+b x+c \text { and watched the error at } \\
& x= \pm 100 \text { and } \pm 99 \\
& \text { found } P(x)=5 x^{3}-5 x^{2}+\frac{1}{2} x+58 \\
& \text { adjusted a first then } b \text { then } c
\end{aligned}
$$

For small values of x the smaller powers of x are what are important. When we look at a polynomial

$$
p(x)=a_{n} x^{n}+\cdots+a_{2} x^{2}+a_{1} x+a_{0}
$$

For x small (this means x values close to 0), the polynomial will be approximate to the final terms.

$$
p(x) \approx a_{2} x^{2}+a_{1} x+a_{0}=f(x)
$$

Here I am including the final 3 terms since we know what parabolas look like fairly well and calling this parabola f.

This means that $p(x)-f(x) \approx 0$ for small x.
6. Consider the polynomial $p(x)=x^{4}-2 x^{3}-2 x^{2}+\dot{x}-2$. Using technology graph the polynomial and the parabola $f(x)=-2 x^{2}+x-2$. Complete the table of values to illustrate how close they are for small x

x	-5	-1	-0.1	-0.01	-0.001
$p(x)$	818	-2	-2.1179	-2.01019	-2.001002
$f(x)$	-57	-5	-2.12	-2.0102	-2.001002
$\|p(x)-f(x)\|$	875	3	0.0021	2×10^{-6}	2×10^{-9}

x	0.001	0.01	0.1	1	5
$p(x)$	-1.99902	-1.990202	-1.9269	-4	328
$f(x)$	-1.999002	-1.9902	-1.92	-3	-47
$\|p(x)-f(x)\|$	2×10^{-9}	2×10^{-6}	0.0019	1	375

7. Why do you think we are looking at the difference here rather than the quotient like we did for large x ?
For large $x\left(\rho(x)-a_{n} x^{x}\right)$ doesn't go
as x gets large.
8. For the polynomial is the previous question, use technology to determine an interval of x such that $|p(x)-f(x)|<0.01$
find that error <0.01

9. If we only approximated $p(x)$ with the last two terms $y=x-2$, what interval of x would give us $|p(x)-y|<0.01 ?$
a much smaller + interval, only
$-0.0736<x<0.0645$
10. Given the polynomial $q(x)=-0.1 x^{5}-0.5 x^{4}+x^{2}-x+3$ find a parabola that approximates q for small x and determine an interval of x such that the difference between them is less than 0.005
$q(x) \sim x^{2}-x+3$
for small x

on the interval

$-0.2677<x<0.2642$
the error
is less then 0.005
11. Graph the function $f(x)=\sqrt{x+1}$ and use technology to help build a parabola $a x^{2}+b x+c$ that looks like f for small x. Discuss why you chose the values of a, b, and c when building it. Use your polynomial to estimate $\sqrt{1.1}$

$$
f(x)=\sqrt{x+1}
$$

$$
a x^{2}+b x+1<y \text {-int }
$$

$$
\uparrow \begin{gathered}
\uparrow \\
\text { slope (2) }
\end{gathered}
$$

\uparrow
slope (2)
books best
(3) but somethin $=v e$

1 g+

$$
\sqrt{x+1} \sim-0.2 x^{2}+\frac{1}{2} x+1
$$

from this
$\sqrt{1.1} \sim-0.2(0.1)^{2}+\frac{1}{2}(0.1)+1$

$$
\begin{aligned}
& =-0.2(0.01)+1.05 \\
& =-0.002+1.05 \\
& =1.0498
\end{aligned}
$$

Remainder theorem says if $p(x)$ is divided by $x-a$ then its remainder is just $p(a)$. That is $p(a)=r$.
12. If the polynomial $p(x)$ is divided by $x-3$ and the remainder is -2 , what point must be on the curve p ?

$$
p(3)=-2 \quad \Rightarrow \quad(3,-2)
$$

13. If the polynomial $p(x)$ is divisible by $x+4$, what point must be on the curve p ?

$$
P(-4)=0 \quad \Rightarrow \quad(-4,0)
$$

14. If we know $p(x)$ is divisible by $x+4$ then what does its factored form look like?

$$
p(x)=(x+4) q(x)
$$

15. If a polynomial is divisible by $x+1$, but it has a remainder of 3 when divided by $x-1$ and a remainder of -1 when divided by $x+3$, what points must the curve pass through and how can we write it in factored form?

$$
\begin{array}{lll}
P(-1)=0 \\
P(1)=3 \\
P(-3)=-1
\end{array} \quad \Rightarrow \quad(-1,0) ;(1,3) ;(-3,-1)
$$

16. For the above polynomial, if it is a parabola what would the equation to the parabola be? Express the polynomial as $A \cdot q(x)$ where $q(x) \in \mathbb{Z}[X]$ and $A \in \mathbb{Q}$.

$$
\begin{aligned}
& P(x)=a x^{2}+b x+c=(x+1)(M x+B) \\
& p(1)=3 \\
& \Rightarrow 3=p(1)=2(M+B) \\
& p(-3)=-1 \\
& \text { and }-1=p(-3)=-2(-3 M+B) \\
& \Rightarrow \frac{3}{2}=m+B \quad(1) \Rightarrow \text { (1)-(2) }: 1=4 m \Rightarrow M=1 / 4 ; B=\frac{5}{4} \\
& \begin{aligned}
\frac{3}{2}=-3 m+B^{(2)} & P(x) \\
\frac{1}{2}= & (x+1)\left(\frac{1}{4} x+5 / 4\right) \\
& =\frac{1}{4}(x+1)(x+5)
\end{aligned} \\
& \text { 17. What if the polynomial was a cubic instead? Find one such cubic and explain why there are infinitely }
\end{aligned}
$$ many cubic polynomials that satisfy these conditions.

If $P(x)=(x+1)\left(a x^{2}+b x+c\right)$

$$
p(1)=3 \quad p(-3)=-1
$$

(1) $3=2(a+b+c) \Rightarrow 2$ eqns with 3 unknowns
(2) $-1=-2(9 a-2 b+c) \quad \Rightarrow \infty$ many solutions.
set $b=0$ (or anything) and find a and c
(1) $\frac{3}{2}=a+c$

$$
\begin{aligned}
& \text { (1) -(2): } 1=-8 a \quad a= \\
& P(x)=(x+1)\left(-\frac{1}{8} x^{2}+\frac{13}{8}\right)
\end{aligned}
$$

$$
=\frac{-1}{8}(x+1)\left(x^{2}-13\right)
$$

