Polynomials: Understanding Practice 3

Goal: Build a better understanding of the graphs of polynomials on a very large scale and a small scale to prepare for calculus. Use remainder theorem and factor theorem with polynomials in $\mathbb{Z}[X]$

When we look at a polynomial

$$p(x) = a_n x^n + \dots + a_2 x^2 + a_1 x + a_0$$

For $x \gg 0$ (this means significantly greater than 0) the polynomial will be approximate to the leading term. $p(x) \approx a_n x^n$

This means that $\frac{p(x)}{a_n x^n} \approx 1$ for large x.

1. Consider the polynomial $p(x) = -3x^4 + 50x^2 - 100x + 500$. In desmos or geogebra, write the quotient of p(x) and $-3x^4$ as a function Q and use it to make a table of values for the quotient.

<i>x</i>	1	10	100	1000	10 ⁶
$\frac{p(x)}{-3x^4}$	- 149	0.85	0.998365	o.997933	0. १५१५
x	-1	-10	-100	-1000	-10^{6}
$\frac{p(x)}{-3x^4}$	-215.6	0.783.	D.99 829	0.959 983	७. १९१९

How does the table and the graph show that as $|x| \to \infty$ we have that $p(x) \to -3x^4$

as
$$|x| \rightarrow \infty$$
 (gets by) we have $\frac{P(x)}{-3x^{4}} \rightarrow 1$
so $P(x) \rightarrow -3x^{4}$ (If the quotient is I then
top and bottom are the same)

2. What would the quotient be if we divided by $-x^4$ instead?

3. The percent error of p and the leading term is $\frac{|p(x)-a_n|}{a_n} = \left|1 - \frac{p(x)}{a_n}\right|$, use technology to determine the interval of x when the percent error is less than 0.1 %

4. For large x, what does the polynomial $P(x) = \frac{1}{4}x^5 + 5x^4 - 30x^3 + 4000x$ approximate, and how large does x need to be for the percent error to be less than 0.05 %

P(x) x + x5 and The error is less than 0.05% when x> 39 994 or ×<-40 006

5. Using technology, construct a polynomial that is within 1 % of $5x^3$ when |x| > 100 but the error is greater or equal to 1 % if $|x| \le 100$

used sliders a, b, c to play with $Pcx_{3} = 5x^{3} + ax^{2} + bx + c$ and watched the error at $x = \pm 100$ and ± 99 found $pcx_{1} = 5x^{3} - 5x^{2} + \pm x + 58$ adjusted a first then b then c

 \mathbf{O}

For small values of x the smaller powers of x are what are important. When we look at a polynomial $p(x) = a_n x^n + \dots + a_2 x^2 + a_1 x + a_0$

For x small (this means x values close to 0), the polynomial will be approximate to the final terms.

$$p(x) \approx a_2 x^2 + a_1 x + a_0 = f(x)$$

Here I am including the final 3 terms since we know what parabolas look like fairly well and calling this parabola *f*.

This means that $p(x) - f(x) \approx 0$ for small x.

6. Consider the polynomial $p(x) = x^4 - 2x^3 - 2x^2 + x - 2$. Using technology graph the polynomial and the parabola $f(x) = -2x^2 + x - 2$. Complete the table of values to illustrate how close they are for small x

<u> </u>	-5	-1	-0.1	-0.01	-0.001
p(x)	818	-2	-2.1179	-2.01019	-2.001002
f(x)	-57	-5	-2.12	-2.6102	-2 001002
p(x) - f(x)	875	3	ا ۵۰۰۵ ا	2×10-6	2×10-1
<i>x</i>	0.001	0.01	0.1	1	5
p(x)	- (.99902	-1.990202	-1.9219	-4	328
f(x)	-1.999002	-1.9902	-1.92	-3	- 47
p(x) - f(x)	2×10-1	2×10	0.0019	L. L.	375

7. Why do you think we are looking at the difference here rather than the quotient like we did for large *x*?

For large
$$\chi$$
 ($\rho(x) - a_n \chi^h$) doesn't go to
os χ gets large.
For small χ $\frac{\rho(\chi)}{f(\chi)}$ could be $\frac{O}{O}$

8. For the polynomial is the previous question, use technology to determine an interval of x such that |p(x) - f(x)| < 0.01

9. If we only approximated p(x) with the last two terms y = x - 2, what interval of x would give us |p(x) - y| < 0.01?

10. Given the polynomial $q(x) = -0.1x^5 - 0.5x^4 + x^2 - x + 3$ find a parabola that approximates q for small x and determine an interval of x such that the difference between them is less than 0.005

11. Graph the function $f(x) = \sqrt{x+1}$ and use technology to help build a parabola $ax^2 + bx + c$ that looks like f for small x. Discuss why you chose the values of a, b, and c when building it. Use your polynomial to estimate $\sqrt{1.1}$

Remainder theorem says if p(x) is divided by x - a then its remainder is just p(a). That is p(a) = r.

12. If the polynomial p(x) is divided by x - 3 and the remainder is -2, what point must be on the curve p?

 $p(3) = -2 \implies (3, -2)$

13. If the polynomial p(x) is divisible by x + 4, what point must be on the curve p?

PL-4)=0 => (-4,0)

14. If we know p(x) is divisible by x + 4 then what does its factored form look like?

15. If a polynomial is divisible by x + 1, but it has a remainder of 3 when divided by x - 1 and a remainder of -1 when divided by x + 3, what points must the curve pass through and how can we write it in factored form?

$$P(-1) = 0 = (-1, 0); (1, 3); (-3, -1)$$

$$P(-1) = 3$$

$$P(-3) = -1 \quad \text{ord} \quad P(k) = (k + 1) \quad q(k)$$

16. For the above polynomial, if it is a parabola what would the equation to the parabola be? Express the polynomial as $A \cdot q(x)$ where $q(x) \in \mathbb{Z}[X]$ and $A \in \mathbb{Q}$.

$$P(x) = \alpha x^{2} + bx + c = (x + 1) (mx + B) \qquad p(1) = 3$$

$$P(-3) = -1$$

If $P(x) = (x+1)(ax^{2} + bx+c)$ P(1) = 3 P(-3) = -1 P(-3) = -1P(-3) = -1

many cubic polynomials that satisfy these conditions.