Rational Models: Understanding Practice 4

Goal: Be able to model rational functions in general cases and interpret the model in a meaningful way.

Given the following situations, what are important numbers (constants and variables) that are needed to understand and predict things, and what would we want to predict about the situation?
A. A plane is flying between cities while it is windy.
B. Two heaters are being used to heat a cabin.
C. Two solutions of food colouring are being mixed together.

1. In situation A, I imagined a plane travelling between Vancouver and Calgary (1000 km) and the speed of the plane is $600 \mathrm{~km} / \mathrm{h}$ if there is no wind. The wind is $100 \mathrm{~km} / \mathrm{h}$ and the plane flies through the headwind for 400 km and flies through the tailwind on the way back for 500 km . I would want to know how long it takes to make a round trip.

Build an equation to determine the time it would take for a round trip.

$$
T=\frac{1100}{600}+\frac{500}{700}+\frac{400}{500}
$$

$=3 \mathrm{hr}$ and 21 min
2. Generalize this. The plane's speed is $p(\mathrm{~km} / \mathrm{h})$, the wind's speed is ω, the distance between the cities is $d(\mathrm{~km})$ and the plane flies through the headwind for $\partial_{H}(\mathrm{~km})$ and flies through the tailwind for ∂_{T}.

Build an equation for the time it takes to make a round trip

$$
T\left(p, \alpha, \omega, \partial_{H}, \partial_{T}\right)=\frac{2 d-\partial_{H}-\partial_{T}}{p}+\frac{\partial_{H}}{p-\omega}+\frac{\partial_{T}}{p+\omega}
$$

Arguable that the speeds and distances would be reported to the nearest whole \#
3. Use the following situation: $p=600, d=1000, \partial_{H}=500$ and $\partial_{T}=500$ to make an equation for the time t as a function of the wind speed ω.

$$
\begin{aligned}
& t(\omega)=T(600,1000, \omega, 500,500) \\
&=\frac{1000}{600}+\frac{500}{600-\omega}+\frac{500}{600+\omega} \\
& t: \mathbb{Z} \rightarrow \mathbb{R} \\
& \omega \geqslant 0
\end{aligned}
$$

4. What is a reasonable domain for the function?

but
the plane
cont fly if $\omega>300$ so
$\omega \in[0,300] \cap \mathbb{Z}$
seems reasonable
5. Determine the interval of wind speeds that would allow the plane to make the round trip in under 3 hours and 30 minutes.

$$
w=180.9 \mathrm{~km} / \mathrm{h} \Rightarrow \text { A the wind is }
$$

$180 \mathrm{~km} / \mathrm{h}$ or less the trip will be under s 35 hrs

$$
\begin{aligned}
& t(\omega)=\frac{7}{2}=\frac{10}{6}+500\left(\frac{1}{600+\omega}+\frac{1}{600-\omega}\right) \\
& \Rightarrow \quad \frac{11}{6} \cdot \frac{1}{500}=\frac{1200}{600^{2}-\omega^{2}} \\
& 600^{2}-\omega^{2}=\frac{1200 \cdot 500 \cdot 6}{11}
\end{aligned}
$$

6. In situation BI imagined a heavy-duty heater that could raise the temperature in the room by $1^{\circ} \mathrm{C}$ in 3 minutes and a less impressive heater that could raise the temperature in the room by $1^{\circ} \mathrm{C}$ in 20 minutes. I would want to know working together how long would it take to heat the room by $20^{\circ} \mathrm{C}$ (something reasonable like from $-5^{\circ} \mathrm{C}$ to $15^{\circ} \mathrm{C}$)

How long would it take the heaters working together to heat the room by $20^{\circ} \mathrm{C}$?
7. Generalize this. The strong heater will raise the temperature by $1^{\circ} \mathrm{C}$ in τ_{H} minutes and the weak heater will raise the temperature by $1^{\circ} \mathrm{C}$ in τ_{h} minutes. We want to raise the room's temperature by T degrees Celsius. Make an equation for the time needed t.

$$
\begin{equation*}
t: \mathbb{R}^{3} \rightarrow \mathbb{R} \tag{3}
\end{equation*}
$$

$$
T \geqslant 0, \tau_{H}, \tau_{h}>0
$$

$$
\begin{aligned}
& \frac{1}{3} \cdot \mathrm{C} / \text { min }+\frac{1}{20} \cdot{ }^{\prime} / \text { min }=0.385 \cdot \mathrm{C} / \mathrm{min} \\
& \Rightarrow T=\frac{\text { temp }}{\text { rate }}=\frac{20^{\circ} \mathrm{C}}{6.38 \overline{3} \mathrm{C} / \mathrm{min}} \\
& =52 \mathrm{~min} 10 \mathrm{sec} \\
& \sim 52 \min
\end{aligned}
$$

8. Use the following situation: $T=20, \tau_{h}=20$. Make an equation so your time t is a function of τ_{H} (the time needed for the heavy-duty heater).

$$
t_{1}\left(\tau_{H}\right)=t\left(20, \tau_{H}, 20\right)=\frac{400 \tau_{H}}{\tau_{H}+20}
$$

$$
t_{1}: \mathbb{Q} \rightarrow \mathbb{Q}
$$

$$
\tau_{H}>0
$$

9. What would be a reasonable domain for τ_{H} ?
sere above map. $\tau_{H}>0$ ($1+$ con NOT be 0)
we probably would not be impressed if $\tau_{H}>60 \quad\left(\right.$ it takes more than 1 how to charge $1^{\circ} \mathrm{C}$)
$\tau_{H} \in(0,60) \cap \mathbb{Q}$. 10. What does τ_{H} need to be in order for the room to gain $20^{\circ} \mathrm{C}$ in 30 minutes?

$$
\begin{array}{r}
t_{1}\left(\tau_{H}\right)=30=\frac{400 \tau_{H}}{\tau_{H}+20} \\
\Rightarrow 30 \tau_{H}+600=400 \tau_{H} \\
\tau_{H}=1.62 \mathrm{~min}
\end{array}
$$

\Rightarrow it needs to change $1^{\circ} \mathrm{C}$ in 1 min 37 sec
11. In situation CI imagined I had 100 mL of a 25% red solution being mixed with 200 mL of a 40% solution. I want to know what the concentration of the mixture is.

Determine the concentration of the mixture.

12. Generalize this. You have V_{0} litres of a solution of concentration c_{0} and add V litres of a solution of concentration c. Determine an equation for the concentration of the mixed solution.

V can be 0 but
$V_{0} \neq 0$ since we need

$$
\begin{gathered}
V \geqslant 0, V_{0}>0 \\
c, c_{0} \in \mathbb{Q}
\end{gathered}
$$

to have a solution of
something to mix.
If $v_{0}=0$ then we just are changing containers A since C, L_{0} are \% values the max they can be is 1 $c_{1} c_{0} \in[0,1] \cap \mathbb{Q}$
13. If $V_{0}=0.2$ and $c_{0}=0.25$, write the concentration of the mixture as a function of V.

$$
\begin{aligned}
& C_{c}(v)=C^{\prime}(v, 0.2, c, 0.25) \\
& {[0.25, c) \text { if } c>0.25} \\
& \gamma \\
& \zeta_{c}(v)=\frac{c v+0.05}{v+0.2} \\
& / / C_{i}: \mathbb{Q} \rightarrow(0,1) \cap \mathbb{Q} \\
& (c, 0.25] \text { if c<0.25 }
\end{aligned}
$$

14. What is the horizontal asymptote and what does it represent?
$e_{c}(v) \sim \frac{C v}{v}=c$

The uncertration of the solution beng added
15. If I want a 30% mixture and have an 80% bottle of red. How much of the 80% do I need to add?

$$
C_{0.8}(v)=\frac{0.8 v+0.05}{v+0.2}=0.3
$$

$$
\Rightarrow 0.8 v+0.05=0.3 v+0.06
$$

$$
V=0.02
$$

\Rightarrow add 20 mL of the 80% solution.

