Exponential Models: Understanding Practice 6

Goal: Be able to model exponential functions in general cases and interpret the model in a meaningful way.

Given the following situations, what are important numbers (constants and variables) that are needed to understand and predict things, and what would we want to predict about the situation?
A. An amount of money is invested and left to grow.
B. The population of salmon was stable but has started to decline due to over fishing and environmental stresses in a region.
C. A baked pie comes out of the oven and cools down.
D. A rumour is spread around the school until eventually everyone hears it.

In situation A, I imagined an investment of $\$ 50,000$ is expected to return 7% annually (every year).

Determine a function for the amount the investment grows after t years.

Generalize this. The initial investment is A_{0} and the rate of return is r. State the mapping notation of this function and describe its domain. Be sure to specify a reasonable domain for t.

Use the situation: $A_{0}=\$ 80,000$ and $r=9 \%$ to determine the time when the investment has grown to \$500,000.

In situation B I imagined that the population was stable at 1 million, but in 1985 the population was 900 K and in 1990 the population was 600K.

Determine a function for the salmon population in year t.

Generalize this. The stable population is P_{0}, and there were P_{1} fish in year t_{1} and P_{2} fish in year t_{2}. We have that $P_{0}>P_{1}>P_{0}$ and $t_{2}>t_{1}$. State the mapping notation of this function and describe its domain. Be sure to specify a reasonable domain for t.

Use the original parameters to predict when the population will become 400K.

In situation C I imagined a baked pie comes out of the oven and is $80^{\circ} \mathrm{C}$ at 4 pm , it is left to cool until dinner at 7 pm when the temperature is $24^{\circ} \mathrm{C}$. The temperature of the room is $20^{\circ} \mathrm{C}$.

Determine a function for the temperature of the pie at a given time.

To generalize this, think of how is this situation similar/different to the salmon problem? For the above situation, let the room temperature $T_{a m b}$, and say the pie was T_{1} degrees at time t_{1} (pm hours) and T_{2} degrees at time t_{2}. State the mapping notation of this function and describe its domain. Be sure to specify a reasonable domain for t.

What time will the pie become room temperature (use the case at the top)?

In situation D I imagined that Prince of Wales has about 1000 students and on June $15^{\text {th }} 500$ people have heard the rumour and on June $22^{\text {nd }} 700$ people have herd it.

Determine a function that describes the number of people who have heard the rumour at time t.

Generalize this using your own variables. State the mapping notation of this function and describe its domain. Be sure to specify a reasonable domain for t.

Use your original equation to determine when everyone has heard the rumour.

Why would we need a different model if we wanted to model the beginning of the rumour spreading?

