Exponential and Log Transformations Understanding Practice 7

Goal: Use exponential and log laws to relate transformations into different forms of each other.

1. Consider the transformation of the exponential function:

$$
f(x)=2 \cdot e^{0.5(x-4)}-1
$$

a. State how f has been transformed from e^{x}
1.) vert + horiz expand by 2
2.) right 4 and down I
b. Write this transformation in the form $A e^{k x}+D$, state the transformations that have occurred.

$$
2 e^{0.5 x-2}-1=2 e^{-2} \cdot e^{0.5 x}-1
$$

1.) vert stretch by $\frac{2}{e^{2}}$ and horiz. \exp and by 2
2) down I
c. Write this transformation in the form $e^{k(x-C)}+D$, state the transformations that have occurred.

$$
\begin{aligned}
2 e^{0.5(x-4)}-1=e^{\ln 2} \cdot e^{\frac{1}{2}(x-4)}-1 & =e^{\frac{1}{2} x-2+\ln 2}-1 \\
& =e^{\frac{1}{2}(x-4+2 \ln 2)}-1
\end{aligned}
$$

1.) hort expand by 2
1.) right by $2-\ln 2$
2) shift down 1 and
2.) horiz expand by 2 resht $4-\ln 4$
3.) down by 1
2. Consider the transformation of the log function:

$$
h(x)=2 \ln \left(\frac{1}{3}(x+3)\right)+1
$$

a. State how h has been transformed from $\ln x$.
1.) vert expand by 2 +horit expand by 3
2.) left 3 and up 1
b. Write this transformation in the form $A \cdot \ln (x-C)+D$, state the transformations that have occurred.

$$
2 \ln \left(\frac{1}{3}(x+3)\right)+1=2 \ln \frac{1}{3}+2 \ln (x+3)+1
$$

1.) vert expand by 2
2) left 3 and down $2 \ln 3-1$
c. Write this transformation in the form $A \cdot \ln (B(x-c))$, state the transformations that have occurred.

1. vert expend by 2
2) horit expand by $\frac{3}{\sqrt{e}}$
3.) left by 3
3. Consider the general transformation of the exponential function:

$$
g(x)=a \cdot e^{k(x-c)}+d
$$

a. Write g in the form $A e^{K x}+D$, where A, K, D are in terms of a, k, c, d. State which transformations are equivalent.

$$
\begin{aligned}
& a \cdot e^{k(x-c)}+d=a e^{k x} e^{-k c}+d \\
& A=a e^{-k c}, K=k, D=d
\end{aligned}
$$

\Rightarrow a horizontal shift by c
a vertical stretch by $e^{-k c}$
(where $\frac{1}{k}$ is the horizontal stretch)

* if $c>0$ right shift \Rightarrow vertical compression
if $c<0$ left shift \Rightarrow retcical expansion
b. Write g in the form $e^{K(x-C)}+D$, where C, K, D are in terms of a, k, c, d. State which

$$
\begin{aligned}
a e^{k(x-c)}+d & =e^{\ln a} \cdot e^{k(x-c)}+d \quad, a>0\left(\begin{array}{c}
\text { if } \\
a<0 \\
\text { cont do } \\
\text { coll }
\end{array}\right) \\
& =e^{k x-k c+\ln a}+d \\
& =e^{k\left(x-\left(c-\frac{1}{k} \ln a\right)\right.}+d
\end{aligned}
$$

$$
\Rightarrow C=C-\frac{1}{k} \ln a, \bar{K}=k, D=d
$$

\Rightarrow a vertical stretch by a
a horit. shift by $-\frac{1}{k} \ln a$ ($\frac{1}{k}$ is the hoviz. stretch)
Δ if $a \in(0,1) \Rightarrow$ vertical compression \Rightarrow shift right if $a>1 \Rightarrow$ vertical expansion \Rightarrow shift left
c. Why would the form in part (a) preferred over (b)? Hint: Consider what transformation couldn't occur if there were no vertical stretch.
as shown in the previous, we
con't bring a -re (Roc) into a
Shift. There would still be a -we infront.
d. Show that a transformation in part (a) implies the transformation in part (b) and vice versa.
(a) h. shift by $c \equiv v$. stretch by $e^{-k c}$
let $-K c=m$
\Leftrightarrow h. Shift by $-\frac{m}{k} \equiv$ v.stretch by e^{m}
let $e^{m}=A$
$\Leftrightarrow h \cdot$ shift by $\frac{-\ln A}{k} \equiv v$. stretch by A
and $f\left(x_{0}\right)=e^{-k x_{0}}$ and $\rho\left(y_{1}\right)=-\frac{\ln y_{0}}{k}$

$$
f(y(x))=e^{-k\left(-\frac{\ln x}{k}\right)}=
$$

$$
y(f(x))=-\frac{\ln \left(e^{-k x}\right)}{k}=\frac{k x}{n}=x
$$

4. Consider the general transformation of the log function:

$$
k(x)=a \cdot \ln (b(x-c))+d
$$

a. Write k in the form $A \cdot \ln (x-C)+D$, where A, C, D are in terms of a, b, c, d. State which transformations are equivalent.

$$
\begin{aligned}
& \quad a \ln b(x-c)+d=a \ln b+a \ln (x-c)+d \quad A b>0 \\
& A=a ; \quad C=c ; \quad D=a \ln b+d
\end{aligned}
$$

$\Rightarrow a$ horiz. stretch by $\frac{1}{b}$

$$
\bar{\equiv}
$$

vert. shift by $a \ln b$ (where a is vol. stretch)
A if $b \in(0,1) \Rightarrow h$ expansion \Rightarrow shift down $(a>0)$
if $b>1 \Rightarrow h$. compression $\Rightarrow \operatorname{shift}$ up (a>0)
b. Write k in the form $A \cdot \ln (B(x-C))$, where A, B, C are in terms of a, b, c, d. State which transformations are equivalent.

$$
\begin{aligned}
a \ln b(x-c)+d & =a \ln b(x-c)+\ln e^{d} \\
& =a\left(\ln b(x-c)+\frac{1}{a} \ln e^{d}\right) \\
& =a \ln \left(b e^{\frac{d}{a}}(x-c)\right)
\end{aligned}
$$

$$
\Rightarrow A=a ; B=b e^{\frac{d}{a}} ; C=c
$$

so a vert. shift by d
a horiz stretch by $e^{-\frac{d}{a}}$ (a is vert. Stretch)

* $d>0 \Rightarrow$ shift up \Rightarrow horiz compress ($a>0$)
$d<0 \Rightarrow$ shift down \Rightarrow horiz. expansion ($a<0$)
c. Why would the form in part (b) preferred over (a)?

As seen before
part (b) allows
to hove Roy since part (a) we need to evaluate $\ln b, b>0$
e. Show that a transformation in part (a) implies the transformation in part (b) and vice versa.
4) h. stretch by $\frac{1}{b} \equiv v . \operatorname{shift} a \ln b$
let $a \ln b=D \Leftrightarrow \frac{D}{a}=\ln b \Leftrightarrow e^{\frac{D}{a}}=b$

$$
\Leftrightarrow \text { h. stretch by } \frac{1}{e^{D / a}} \equiv r \cdot \operatorname{shiff} \quad D
$$

(b) h. stretch by $e^{-D / a} \equiv$ v.shift D $f\left(y_{0}\right)=a \ln \frac{1}{y_{0}}$

$$
y\left(x_{0}\right)=e^{-\frac{x_{0}}{a}}
$$

$$
\begin{aligned}
& \mathscr{F}(\mathscr{f}(x))=a \ln \frac{1}{e^{-\frac{x}{a}}}=a \ln e^{\frac{x}{a}}=\frac{a x}{a}=x \\
& \mathscr{H}(\mathscr{F}(x))=e^{-\frac{a \ln \frac{1}{x}}{a}}=e^{-\ln \frac{1}{x}}=e^{\ln x}=x
\end{aligned}
$$

