Derivative of e^{x} and $\ln x$

We saw using the limit properties that

$$
\frac{d}{d x} e^{x}=\lim _{h \rightarrow 0} \frac{e^{x+h}-e^{x}}{h}=\lim _{h \rightarrow 0} \frac{e^{x}\left(e^{h}-1\right)}{h}=e^{x} \lim _{h \rightarrow 0} \frac{e^{h}-1}{h}
$$

And

$$
L=\lim _{h \rightarrow 0} \frac{e^{h}-1}{h} \stackrel{\text { def }}{=} 1
$$

The value of e that makes the limit equal to 1 is 2.718281828 ... and we call this Euler's Number. By definition we have that

$$
\frac{d}{d x} e^{x}=e^{x}
$$

And so if we want to differentiate $y=\ln x$ we can change to exponential

$$
\begin{aligned}
& e^{y}=e^{\ln x}=x \\
& \Rightarrow e^{y} \cdot \frac{d y}{d x}=1 \\
& \Rightarrow \frac{d y}{d x}=\frac{1}{e^{y}}=\frac{1}{x}
\end{aligned}
$$

We must remember chain rule, so if $f(x)=e^{x}$ and we want to find $d y / d x$ from

$$
y=e^{u}
$$

Then we have to find $d f / d x$ where

$$
f(u)=e^{u}=y
$$

We know that

$$
\frac{d y}{d x}=f^{\prime}(u) \cdot \frac{d u}{d x}=e^{u} \cdot \frac{d u}{d x}
$$

So, chain rule continues through the power.

We can also do this any base since

$$
\begin{gathered}
b^{x}=e^{\ln b^{x}}=e^{x \cdot \ln b} \\
\Rightarrow \frac{d}{d x} b^{x}=\frac{d}{d x} e^{x \cdot \ln b}=e^{x \cdot \ln b} \cdot \ln b=b^{x} \ln b
\end{gathered}
$$

Likewise, we find

$$
\frac{d}{d x} \log _{b} x=\frac{1}{x \cdot \ln b}
$$

With these new derivatives we should be able to use derivative rules and take the derivative of any product, quotient or chain we are given.

Note! The function $y=\ln (\ln x)$ is a composition of functions. We are not multiplying by \ln because that does not make sense. What is $\ln x$. It is a function that maps $x \rightarrow y$ such that $e^{y}=x$. So $\ln (\ln x)=y$ maps

$$
x \rightarrow z \rightarrow y
$$

Such that $x=e^{z}$ and $z=e^{y}$
Just as $\sqrt{\sqrt{x+2}}$ does not multiply square roots together. Because writing $\sqrt{ } \cdot \sqrt{ }$ make no sense at all.

Finally, we can simplify logs using log laws

$$
\begin{gathered}
\ln (a b)=\ln a+\ln b \\
\ln \left(\frac{a}{b}\right)=\ln a-\ln b \\
\ln a^{n}=n \cdot \ln a
\end{gathered}
$$

When we have a big product or quotient, we can take the log of both sides and find the derivative implicitly.
Things we need to know and understand:

- How to take derivative of exponential and log function with any base
- Can use product, quotient and chain rule with exponential and log functions.
- Can simplify logs using log laws
- Can use simple applications with exponential and logs such as Newton's method and finding extrema's and concavity

Review Questions:

For the following find $d y / d x$

1. $y=b^{u}$
2. $y=\log _{b} u$
3. $y=\frac{x^{2}+3 e^{x}}{2 e^{x}-x}$
4. $y=3 z^{2} e^{w}$
5. $y=\left(5^{4 \sqrt{x}+x^{2}}\right)^{3}$
6. $y=\ln \left(\ln \left(\ln \left(x^{2}+z\right)\right)\right.$
7. $y=\ln \sqrt{\frac{\left(x^{2}+1\right)^{5}}{(3 x+2)^{20}}}$
8. $y=\sqrt{\log \sqrt{t}}$
9. $y=\sqrt[3]{\frac{x(x+1)(x-2)}{\left(x^{2}+1\right)(2 x+3)}}$
10. $y=\left(\frac{x(x-2) \ln (x+3)}{\left(x^{2}-1\right) e^{2 x}}\right)^{3}$
11.

$$
y=\sqrt{x}^{x^{2}}
$$

12.

$$
y=\ln ^{\ln x} x
$$

13.

$$
y=x^{\ln ^{x} x}
$$

Find the solution to the following
14. $e^{x}-\ln x=4$ (one solution)
15. $\ln (\ln x)=5-x$ (one solution)

Graph the following functions
16. $y=x \cdot \ln \left(x^{2}\right)$ Note that $\lim _{x \rightarrow 0} x \ln \left(x^{2}\right)=0$
17. $y=x^{2} e^{-x}$

Solutions:

1. $b^{u} \cdot \ln b \cdot \frac{d u}{d x}$
2. $\frac{1}{u \cdot \ln b} \cdot \frac{d u}{d x}$
3. Quotient rule \Rightarrow

$$
\frac{\left(2 x+3 e^{x}\right)\left(2 e^{x}-x\right)-\left(2 e^{x}-1\right)\left(x^{2}+3 e^{x}\right)}{\left(2 e^{x}-x\right)^{2}}
$$

4. Product and chain rule \Rightarrow

$$
6 z e^{w} \cdot \frac{d z}{d x}+3 z^{2} e^{w} \cdot \frac{d w}{d x}
$$

5. Chain rule \Rightarrow

$$
3\left(5^{4 \sqrt{x}+x^{2}}\right)^{2} \cdot\left(5^{4 \sqrt{x}+x^{2}} \cdot \ln 5\right) \cdot\left(\frac{2}{\sqrt{x}}+2 x\right)
$$

6. Chain rule \Rightarrow

$$
\frac{1}{\ln \left(\ln \left(x^{2}+z\right)\right)} \cdot \frac{1}{\ln \left(x^{2}+z\right)} \cdot\left(\frac{1}{x^{2}+z}\right) \cdot\left(2 x+\frac{d z}{d x}\right)
$$

7. Split into a difference \Rightarrow

$$
\begin{gathered}
y=\frac{5}{2} \ln \left(x^{2}+1\right)-10 \ln (3 x+2) \\
y^{\prime}=\frac{5 x}{x^{2}+1}-\frac{30}{3 x+2}
\end{gathered}
$$

8. Chain rule \Rightarrow

$$
\frac{1}{2 \sqrt{\log \sqrt{t}}} \cdot \frac{1}{2 t \cdot \ln 10} \cdot \frac{d t}{d x}
$$

9. Take In of both sides \Rightarrow

$$
\begin{gathered}
\ln y=\frac{1}{3}\left(\ln x+\ln (x+1)+\ln (x-2)-\ln \left(x^{2}+1\right)-\ln (2 x+3)\right) \\
\frac{1}{y} y^{\prime}=\frac{1}{3}\left(\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x-2}-\frac{2 x}{x^{2}+1}-\frac{2}{2 x+3}\right) \\
y^{\prime}=\frac{1}{3} \cdot \sqrt[3]{\frac{x(x+1)(x-2)}{\left(x^{2}+1\right)(2 x+3)}} \cdot\left(\frac{1}{x}+\frac{1}{x+1}+\frac{1}{x-2}-\frac{2 x}{x^{2}+1}-\frac{2}{2 x+3}\right)
\end{gathered}
$$

10. Take \ln of both sides \Rightarrow

$$
\begin{gathered}
\ln y=3\left(\ln x+\ln (x-2)+\ln (\ln (x+3))-\ln \left(x^{2}-1\right)-\ln e^{2 x}\right) \\
\frac{1}{y} y^{\prime}=3\left(\frac{1}{x}+\frac{1}{x-2}+\frac{1}{\ln (x+3)} \cdot \frac{1}{x+3}-\frac{2 x}{x^{2}-1}-2\right) \\
y^{\prime}=3\left(\frac{x(x-2) \ln (x+3)}{\left(x^{2}-1\right) e^{2 x}}\right)^{3}\left(\frac{1}{x}+\frac{1}{x-2}+\frac{1}{\ln (x+3)} \cdot \frac{1}{x+3}-\frac{2 x}{x^{2}-1}-2\right)
\end{gathered}
$$

11. Take \ln of both sides \Rightarrow

$$
\begin{gathered}
\ln y=x^{2} \ln \sqrt{x}=\frac{x^{2}}{2} \ln x \\
\frac{1}{y} y^{\prime}=x \cdot \ln x+\frac{x}{2} \\
y^{\prime}=x \sqrt{x}^{x^{2}}\left(\ln x+\frac{1}{2}\right)
\end{gathered}
$$

12. Take \ln of both sides \Rightarrow

$$
\begin{gathered}
\ln y=\ln x \cdot \ln (\ln x) \\
\frac{1}{y} y^{\prime}=\frac{\ln (\ln x)}{x}+\frac{\ln x}{x \ln x} \\
y^{\prime}=\frac{\ln ^{\ln x} x}{x}(\ln (\ln x)+1)
\end{gathered}
$$

13. Take \ln of both sides \Rightarrow

$$
\ln y=\ln ^{x} x \cdot \ln x
$$

Take \ln again \Rightarrow

$$
\begin{gathered}
\ln (\ln y)=x \cdot \ln (\ln x)+\ln (\ln x) \\
\frac{1}{\ln y} \cdot \frac{1}{y} \cdot y^{\prime}=\ln (\ln x)+\frac{1}{\ln x}+\frac{1}{\ln x} \cdot \frac{1}{x} \\
y^{\prime}=x^{\ln ^{x} x} \cdot\left(\ln ^{x} x \cdot \ln x\right) \cdot\left(\ln (\ln x)+\frac{1}{\ln x}+\frac{1}{\ln x} \cdot \frac{1}{x}\right)
\end{gathered}
$$

14. Set equal to 0 and use Newton's method

$$
\begin{gathered}
f(x)=e^{x}-\ln x-4=0 \\
f^{\prime}(x)=e^{x}-\frac{1}{x} \\
x=a-\frac{f(a)}{f^{\prime}(a)}
\end{gathered}
$$

Find $x=1.31531485571 \ldots$
15. Set equal to 0 and use Newton's method

$$
\begin{gathered}
f(x)=\ln (\ln x)+x-5=0 \\
f^{\prime}(x)=\frac{1}{x \ln x}+1 \\
x=a-\frac{f(a)}{f^{\prime}(a)}
\end{gathered}
$$

Find $x=4.58015087918 \ldots$
16. We need to analyze y^{\prime} and $y^{\prime \prime}$

$$
y^{\prime}=\ln x^{2}+2
$$

We find extrema when $\ln x^{2}+2=0$

$$
\begin{gathered}
\ln x^{2}=-2 \\
\Rightarrow x^{2}=e^{-2} \\
\Rightarrow x= \pm e^{-1} \\
y^{\prime \prime}=\frac{2}{x}
\end{gathered}
$$

And $y^{\prime \prime}$ is never 0 but $y^{\prime \prime}>0$ when $x>0$ and vice versa so concave up when $x>0$ and concave down when $x<0$. Using second derivative test we know that $x=-e^{-1}$ is a max and $x=e^{-1}$ is a min. We also see there is a zero at $x= \pm 1$
17. Same as above

$$
y^{\prime}=2 x e^{-x}-x^{2} e^{-x}=x e^{-x}(2-x)
$$

Which is zero at $x=0$ and 2

$$
\begin{gathered}
y^{\prime \prime}=2 e^{-x}-2 x e^{-x}-2 x e^{-x}+x^{2} e^{-x} \\
y^{\prime \prime}=e^{-x}\left(2-4 x+x^{2}\right)
\end{gathered}
$$

Which is zero when $x=\frac{4 \pm \sqrt{8}}{2}=2 \pm \sqrt{2}$
Thus, y is concave up when $x<2-\sqrt{2}$ and $x>2+\sqrt{2}$ and concave down when $2-\sqrt{2}<x<2+\sqrt{2}$. Thus $x=0$ is a min and $x=2$ is a max

