The Derivative

Goal:

- Can use proper derivative notation to describe the slope of a curve
- Can determine if a function is differentiable based on its graph
- Understands that derivative is just another word for slope.

Terminology:

Differentiable

Review: Write the slope of the tangent line to the curve f(x) at the point x = c.

Now that we are comfortable using this limit, we are going to define this slope at the general point x the derivative.

Notation: There are two ways we are going to talk about the derivative

Slope =
$$\frac{\Delta y}{\Delta x}$$
 -> derivative

hat we are comfortable using this limit, we are going to define this slope at the general point
$$x$$
 the derivative.

On: There are two ways we are going to talk about the derivative

Leibnitz's DX Notation

Slope = $\frac{\Delta y}{\Delta x}$ \rightarrow derivative

 $\frac{\Delta y}{\Delta x}$ $\frac{\Delta y}{$

Graph the derivatives of the following functions

1.
$$f(x) = |x|$$

$$2. \quad g(x) = \sqrt{|x|}$$

> The derivative is not defined

-> Because there is on asymptote use limit definition

lim f(0+h)-f(0) h>0 h

-) No derivative at x=0

I we have a vertical tengent line at

tell me what is the slope @ X=C, c+1 $\lim_{x \to c} \frac{x^2 - c^2}{x - c} = 2c$

K'(x) = 2x @ x=1 lim f(1+h) -f(1) f(1)=2 h70 h

All the graphs are differentiable will the derivative exists I (the derivative exists) at every point except one

Practice Problems: 2.1: # 2-4, 6, 9, 10, 12, 13

