

D

- 2. Let g and h be the functions defined by $g(x) = -2x^2 + 4x + 1$ and $h(x) = \frac{1}{2}x^2 x + \frac{11}{2}$. If f is a function that satisfies $g(x) \le f(x) \le h(x)$ for all x, what is $\lim_{x \to 1} f(x)$?
- (A) 3 (A) 3 (B) 4 (C) 5 (A) 3 k = 3k

The limit cannot be determined from the information given.

3. Let f, g, and h be the functions defined by $f(x) = \frac{\sin x}{2x}$, $g(x) = x^4 \cos\left(\frac{1}{x^2}\right)$, and $h(x) = \frac{x^2}{\tan x}$ for $x \neq 0$. All of the following inequalities are true on the interval [-1, 1] for $x \neq 0$. Which of the inequalities can be used with the squeeze theorem to find the limit of the function as x approaches 0?

 $\leq f(x) \leq x^2 +$ > 14 $h(x) \not\leq h(x)$ 2 could work squeezes its function

Day 2 Wrap up Questions

(D) There is no horizontal asymptote to the graph of f.

Day 2 Wrap up Questions

6. Let f be the function defined by $f(x) = \underbrace{2^x + 5}_{e^x + 1} \text{ for } x > 0$. Which of the following is a horizontal asymptote to the graph of f?

(D) There is no horizontal asymptote to the graph of f.