

Test Booklet

Day 3 Wrap up Questions

1.

Name

The graph of the function f is shown above. What are all values of x for which f has a removable discontinuity?

C 0 and 2 only

D) 0, 1, and 2

2	1	(x^2+2x	for $x < 1$	
2.		3	for $x = 1$	
	$f(x) = \langle$	$x^3 + x^2 + x$	for $1 < x < 3$	
		0	for $x = 3$	
		2x+1	for $x > 3$	

Let f be the piecewise function defined above. Which of the following statements is false?

Day 3 Wrap up Questions

(A) f is continuous at x = 1. (B) f is continuous at x = 2.

C) f is continuous at x = 3.

D) f is continuous at x = 4.

3.	x	0	1	2	3	4	5
	f(x)	1	-5	-4	2	-10	-15

Selected values of a continuous function f are given in the table above. What is the fewest possible number of zeros of f in the interval [0, 5]?

A) Zero, because f(x) is not equal to 0 for any of the values in the table.

B) One, because f is continuous on the interval [0, 5] and f(0) > 0 > f(5).

C) Two, because the values for f(x) in the table change from positive to negative twice.

D Three, because f is continuous on the interval [0,5] and f(0) > 0 > f(1), f(1) < 0 < f(3), and f(3) > 0 > f(5).

4. $f(x) = \begin{cases} rac{\sin(5x)}{8x} & ext{for } x \neq 0 \\ c & ext{for } x = 0 \end{cases}$

The function f is defined above, where c is a constant. For what value of c is f continuous at x = 0?

Day 3 Wrap up Questions

5. Let f be the function given by $f(x) = \frac{x-2}{2|x-2|}$. Which of the following is true?

- $(A) \lim_{x \to 2} f(x) = \frac{1}{2}$
- B) *f* has a removable discontinuity at x = 2.
- (c) f has a jump discontinuity at x = 2.

D) *f* has a discontinuity due to a vertical asymptote at x = 2.

6. $f(x) = \left\{ egin{array}{cc} a^2+x^2 & ext{for} \ x < 3 \ a \, (x+3) & ext{for} \ x \geq 3 \end{array}
ight.$

Let f be the function defined above, where a is a constant. For what values of a, if any, is f continuous at x = 3?

Day 3 Wrap up Questions

