1.

The graph of the function f is shown above. What are all values of x for which f has a removable discontinuity?
(A) 0 only
(B) 1 only
(C) 0 and 2 only
(D) 0,1 , and 2
2. $f(x)= \begin{cases}x^{2}+2 x & \text { for } x<1 \\ 3 & \text { for } x=1 \\ x^{3}+x^{2}+x & \text { for } 1<x<3 \\ 0 & \text { for } x=3 \\ 2 x+1 & \text { for } x>3\end{cases}$

Let f be the piecewise function defined above. Which of the following statements is false?

Day 3 Wrap up Questions

A f is continuous at $x=1$.
(B) f is continuous at $x=2$.
(C) f is continuous at $x=3$.
(D) f is continuous at $x=4$.
3.

x	0	1	2	3	4	5
$f(x)$	1	-5	-4	2	-10	-15

Selected values of a continuous function f are given in the table above. What is the fewest possible number of zeros of f in the interval $[0,5]$?

A Zero, because $f(x)$ is not equal to 0 for any of the values in the table.
(B) One, because f is continuous on the interval $[0,5]$ and $f(0)>0>f(5)$.
(C) Two, because the values for $f(x)$ in the table change from positive to negative twice.

D $\begin{aligned} & \text { Three, because } f \\ & f(3)>0>f(5) .\end{aligned}$
4. $f(x)= \begin{cases}\frac{\sin (5 x)}{8 x} & \text { for } x \neq 0 \\ c & \text { for } x=0\end{cases}$

The function f is defined above, where c is a constant. For what value of c is f continuous at $x=0$?

Day 3 Wrap up Questions

(A) 0
(B) $\frac{5}{8}$
(C) 1
(D) 8
5. Let f be the function given by $f(x)=\frac{x-2}{2|x-2|}$. Which of the following is true?
(A) $\lim _{x \rightarrow 2} f(x)=\frac{1}{2}$
(B) f has a removable discontinuity at $x=2$.
(C) f has a jump discontinuity at $x=2$.
(D) f has a discontinuity due to a vertical asymptote at $x=2$.
6. $f(x)= \begin{cases}a^{2}+x^{2} & \text { for } x<3 \\ a(x+3) & \text { for } x \geq 3\end{cases}$

Let f be the function defined above, where a is a constant. For what values of a, if any, is f continuous at $x=3$?

Day 3 Wrap up Questions

(A) 0 only
(B) 3 only
(C) 0 and 3

D There is no such a.

