1. Let f be the function defined by $f(x)=\sqrt{|x-2|}$ for all x. Which of the following statements is true?
(A) is
is continuous but not differentiable at $x=2$.
(B) f is differentiable at $x=2$.

$$
f(2)=0
$$

(C) f is not continuous at $x=2$.
(D) $\lim _{x \neq 2} f(x) \neq 0$

(E) $x=21 \mathrm{~s}$ a is a vertical asymptote of the graph of f.
2. $f(x)=\left\{\begin{array}{l}x+2 \text { if } x \leq 3 \\ 4 x-\text { if } x>3\end{array}\right\}$

Let f be the function given above. Which of the following statements are true about f ?
1 $\lim _{x \rightarrow 3} f(x)$ exists.
山. f is continuous at $x=3$.
III. f is differentiable at $x=3$.
(A) None
(B) I only
(C) II only
(D) I and II only
(E) I, II, and III

Day 5 Wrap Up

3.

The graph of a function f is shown above. At which value of x is f continuous, but not differentiable?
(A) a
(B) b
(C) c
(D) d
(E) e
4.

The graph of the function f shown in the figure above has a vertical tangent at the point $(2,0)$ and horizontal tangents at the points $(1,-1)$ and $(3,1)$. For what values of $x,-4$, is f not differentiable?
(A) 0 only

B 0 and 2 only

C 1 and 3 only

D 0,1 , and 3 only
(E) $0,1,2$, and 3
5. Which of the following statements about the function f, if true, cannot be used to conclude that f is defined at $x=1$?
(A) $\lim _{x \rightarrow 1} f(x)$ exists.
(B) f is continuous at $x=1 \mathrm{f}$
(C) f is differentiable at $x=1$.

D The line tangent to the graph of f at $x=1$ exists.

