Derivative of In and e Extra Practice and Evidence

1. Graph the following functions accurately

b.
$$g(x) = x^2 \cdot \ln \frac{x}{4}$$

2. Find the solutions to the following equations (all solutions are in the interval $x \in (-5, 5)$) a. $x + 2 = e^x$

b.
$$5 - e^{\sqrt{x}} = \ln x - 2$$

3. Determine the equation of all lines that are tangent to the curve $y = e^x$ and pass through the point (1,1).

4. Use log laws to find $\frac{dy}{dx}$ of the following function (next class stuff)

$$\ln y = \ln \left(\frac{(x-2)^3 \sqrt{x^2 + 1}}{x^4 + 3x} \right)$$

5. Since we found $\frac{d}{dx} \ln x$ using implicit differentiation after we knew what the derivative of it's inverse was find the derivative of the inverse function f^{-1} generally. That is, if $\frac{d}{dx}f(x) = f'(x)$ is known and y = f(x), what is $\frac{d}{dx}f^{-1}(x)$?