Derivative of In and e Extra Practice and Evidence

1. Graph the following functions accurately
a. $f(x)=4 x e^{-x}$

b. $g(x)=x^{2} \cdot \ln \frac{x}{4}$

2. Find the solutions to the following equations (all solutions are in the interval $x \in(-5,5)$) a. $x+2=e^{x}$
b. $5-e^{\sqrt{x}}=\ln x-2$
3. Determine the equation of all lines that are tangent to the curve $y=e^{x}$ and pass through the point $(1,1)$.
4. Use log laws to find $\frac{d y}{d x}$ of the following function (next class stuff)

$$
\ln y=\ln \left(\frac{(x-2)^{3} \sqrt{x^{2}+1}}{x^{4}+3 x}\right)
$$

5. Since we found $\frac{d}{d x} \ln x$ using implicit differentiation after we knew what the derivative of it's inverse was find the derivative of the inverse function f^{-1} generally. That is, if $\frac{d}{d x} f(x)=f^{\prime}(x)$ is known and $y=f(x)$, what is $\frac{d}{d x} f^{-1}(x)$?
