Derivative of a Product and Quotient

Goal:

- Can determine the derivative of a product and quotient of functions
- Understands how limits are used to define these rules and can intuit a

Terminology:

- Product Rule
- Quotient Rule

Review: Determine $\frac{d A}{d t}$ given that $A=(12+1.5 t)(156+13 t)$.

Rather than having to do the long and often tedious expansion, we ask ourselves can we determine the general derivative of a product?

$$
\begin{array}{r}
\frac{d}{d x}(f+g)=(f+g)^{\prime}=? ? \\
\frac{d}{d x}(f+g)=(f+g)^{\prime}=\lim _{h \rightarrow 0} \frac{f(x+h) g(x+h)-f(x) g(x)}{h}
\end{array}
$$

$$
\begin{aligned}
& =g(x) \cdot \lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}+f(x) \cdot \lim _{h \rightarrow 0} \frac{g(x+h)-g(x)}{h} \\
& =g \frac{d f}{d x}+f \frac{d g}{d x}=f^{\prime} g+g^{\prime} f
\end{aligned}
$$

But why would you think to do this??

Example: Given $y=\left(4 x^{2}-7 x+1\right)\left(3 x^{4}+x^{3}-2 x\right)$ determine $\frac{d y}{d x}$.

The quotient rule has a similar style argument and is defined as

$$
\frac{d}{d x}\left(\frac{f}{g}\right)=\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} g-g^{\prime} f}{g^{2}}
$$

Example: Determine y^{\prime} given that $y=\frac{3 r^{4}-2 r}{r+4 r^{2}}$

Practice Problems: 3.3: \# 9, 10, 13-19, 22-24, 33

In Class Evidence

10. Find $\frac{d y}{d x}$ and $\frac{d^{2} y}{d x^{2}}$ given that

$$
y=\frac{1}{4 x^{4}}-\frac{1}{3 x^{3}}+\frac{1}{2 x^{2}}-\frac{1}{x}+1
$$

19. Do not expands. Find, $\frac{d y}{d x}$ given that

$$
y=\frac{(x+1)(x+2)}{(x-1)(x-2)}
$$

39. The members of the Blue Boar society always divide the pavilion rental fee for their picnics equally among the members. Currently there are 65 members and the pavilion rents for $\$ 250$. The pavilion cost is increasing at a rate of $\$ 10$ per year, while the Blue Boar membership is increasing at a rate of 6 members per year. What is the current rate of change in each members share of the pavilion fee?
40. Create a geometric argument why the quotient rule is true.
