Quotient Rule

Goal:

- Can use quotient rule to take the derivative of quotient of polynomial and radical functions
- Understands how to visualize quotient rule as an alternate to product rule

Terminology:

- Quotient Rule

Reminder:

- Quiz on Monday (all derivative rules covered thus far 2.1-2.5)

Thus far, we have three rules for taking derivatives of polynomial-type functions:

$$
\begin{gathered}
\frac{d}{d x} x^{n}=n x^{n-1} \\
\frac{d}{d x}(f \pm g)=\frac{d f}{d x} \pm \frac{d g}{d x} \\
\frac{d}{d x}(f \cdot g)=f \cdot \frac{d g}{d x}+g \cdot \frac{d f}{d x}
\end{gathered}
$$

We illustrated product rule using area of a square. Without using your notes try to recreate the justification for product rule.

We want to explore the derivative of a quotient. Using a similar idea as product rule. Illustrate a rule for the derivative of a quotient.

$$
\frac{d}{d x}\left(\frac{f}{g}\right)=
$$

Example: If $f(x)=x^{3}-5 x^{2}+8 x$ and $g(x)=-2 x^{4}+5 x-9$. Then determine

$$
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)
$$

Practice: Determine $h^{\prime}(1)$ given

$$
h(x)=\frac{\left(\sqrt{x^{3}}-3\right)\left(x^{2}+2\right)}{x-\frac{1}{x}}
$$

Practice Problems: 2.5: \# 1-3 (do what you need), 4-8

In Class Evidence

4. If $f(2)=3, f^{\prime}(2)=5, g(2)=-1$, and $g^{\prime}(2)=-4$, find $\left(\frac{f}{g}\right)^{\prime}(2)$.
5. Show that there are no tangents to the curve

$$
y=\frac{x+2}{3 x+4}
$$

with positive slope.
8. If f is differentiable, find expressions for y^{\prime} given the following functions.
b.

$$
y=\frac{f(x)}{x}
$$

c.

$$
y=\frac{x}{f(x)}
$$

9. Use Quotient Rule to deduce the Power Rule for the case of negative integer exponents. That is prove that

$$
\frac{d}{d x}\left(x^{-n}\right)=-n x^{-n-1}
$$

