Chain Rule

Goal:

- Can describe chain rule as the measure of how much something two steps down changes.
- Can use chain rule along with the other derivative rules to find derivatives.

Terminology:

- Chain Rule

Consider a chain that has three blocks connected like illustrated below:

If we move the block furthest to the left, it will cause the black on the far right to move a related amount. We are interested in measuring that rate of change. It helps to use units

Example: If $A(x)=f(g(x))+x^{2}$ and we know $f(2)=4, f^{\prime}(6)=5, g(2)=6, g^{\prime}(2)=-3$. Determine $A^{\prime}(2)$. (Alternatively, you could write it as $\left.\frac{d}{d x} A(x)\right|_{x=2}$)

Example: If $y=\sqrt{u+3}$ and $u=\frac{1}{w^{2}}$ and $w=x^{4}-4 x^{3}+8 x$. Find $\frac{d y}{d u}, \frac{d y}{d w}$, and $\frac{d y}{d x}$

Practice Problems: 2.6: \# 1-5 (do what you need), 6 (at least every other), 7-11

