Chain Rule

Goal:

- Can build chain rule from using a series of small changes
- Can apply chain rule fluently

Terminology:

Chain Rule

Reminder:

• Quiz on Thursday on derivative rules 3.3-3.6

Review:

1. Show that $\frac{d}{dx}\cos x = -\sin x$

2. State the 4 other trig derivatives

Function	Derivative			
$\tan heta$				
sec $ heta$				
csc θ				
$\cot heta$				

We are now going to look at the derivative of function compositions, that is if y = f(x) and u = g(x) then what can we say about the derivative of the composition

$$f(u) = f\bigl(g(x)\bigr)$$

Example: Given $f(u) = \tan u$ and $u = \sqrt{v}$ and $v = w^2 \cos w$, determine $\frac{df}{du}$, $\frac{df}{dv}$ and $\frac{df}{dw}$

In Class Evidence

53. What is the largest value possible for the slope of the curve $y = \sin\left(\frac{x}{2}\right)$?

56. Suppose the functions f and g and their derivatives have the following values at x = 2 and x = 3

x	f(x)	g(x)	f'(x)	g'(x)
2	8	2	1/3	-3
3	3	-4	2π	5

Evaluate the derivatives with respect to x of the following combinations

a. g(f(x)) at x = 2

b. f(x + g(x)) at x = 3

c.
$$f\left(\frac{f(x)}{g(x)}\right)$$
 at $x = 2$

61. The following is the temperature of a town in Alaska on day x (365 day year)

$$T = 37\sin\left[\frac{2\pi}{365}(x - 101)\right] + 25$$

a. On what day is the temperature increasing the fastest?

b. About how many degrees per day is the temperature increasing at its fastest?