Chain Rule

Goal:

- Can build chain rule from using a series of small changes
- Can apply chain rule fluently

Terminology:

- Chain Rule

Reminder:

- Quiz on Thursday on derivative rules 3.3-3.6

Review:

1. Show that $\frac{d}{d x} \cos x=-\sin x$
2. State the 4 other trig derivatives

Function	
$\tan \theta$	
$\sec \theta$	
$\csc \theta$	
$\cot \theta$	

We are now going to look at the derivative of function compositions, that is if $y=f(x)$ and $u=g(x)$ then what can we say about the derivative of the composition

$$
f(u)=f(g(x))
$$

Example: Given $f(u)=\tan u$ and $u=\sqrt{v}$ and $v=w^{2} \cos w$, determine $\frac{d f}{d u}, \frac{d f}{d v}$ and $\frac{d f}{d w}$

Practice Problems: 3.6: \# 1-38 (do what you need), 53, 54, 56, 57, 72

Look Ahead: Given the relation $x^{2}=y^{3}-y$ what is the slope at a given point?

In Class Evidence

53. What is the largest value possible for the slope of the curve $y=\sin \left(\frac{x}{2}\right)$?
54. Suppose the functions f and g and their derivatives have the following values at $x=2$ and $x=3$

x	$f(x)$	$g(x)$	$f^{\prime}(x)$	$g^{\prime}(x)$
2	8	2	$1 / 3$	-3
3	3	-4	2π	5

Evaluate the derivatives with respect to x of the following combinations
a. $g(f(x))$ at $x=2$
b. $f(x+g(x))$ at $x=3$
c. $f\left(\frac{f(x)}{g(x)}\right)$ at $x=2$
61. The following is the temperature of a town in Alaska on day x (365 day year)

$$
T=37 \sin \left[\frac{2 \pi}{365}(x-101)\right]+25
$$

a. On what day is the temperature increasing the fastest?
b. About how many degrees per day is the temperature increasing at its fastest?

