## Implicit Differentiation

## Goal:

- Can describe apply chain rule to find the derivative across functions of different variables and solve for the desired rate of change.


## Terminology:

- Implicit Differentiation

Reminder:

- Quiz on Thursday November 14
- Test on November 20

Review and practice chain rule.

1. Find $d y / d x$ for $y=\left(3 x^{2}+1\right)^{3}$
2. Find $d y / d x$ for $y=\left(5 x^{3}-x^{4}\right)^{7}$
3. Given the following values of $x, f, g$ determine $\frac{d}{d x} f(g(x))$ and $\frac{d}{d x} g(f(x))$ at $x=0$

| $x$ | $f(x)$ | $g(x)$ | $f^{\prime}(x)$ | $g^{\prime}(x)$ |
| :---: | :---: | :---: | :---: | :---: |
| 0 | 1 | 1 | 5 | $1 / 3$ |
| 1 | 3 | -4 | $-1 / 3$ | $-8 / 3$ |

4. Find the equation to tangent line at $x=3$ for the curve

$$
y=\sqrt{x+\sqrt{x^{2}+27}}
$$

5. For the equation $P V=R T$ where the changing variables are $P$ (pressure), $V$ (volume), and $T$ (temperature). In this equation $R$ is a constant and not changing. Find an equation for the change in Pressure as Volume changes.

We want to introduce one major application of chain rule which number 5 alludes to. Implicit differentiation has to do with finding the slope, $d y / d x$, of relations (not necessarily functions) such as:

What is the slope of the relation $x^{2}-y^{3}=y^{2}$ at the point $\left(\frac{1}{\sqrt{8}},-\frac{1}{2}\right)$


Practice: What is the slope of the relation $x y+x^{2} y^{2}=2$ at the point $(-2,1)$


Practice Problems: 2.7: \# 1-3 (do what you need), 4-5 (don't sketch - use Desmos), 8, 9


