Implicit Differentiation

Goal:

- Can use implicit differentiation with chain rule
- Can describe the process for implicit differentiation

Terminology:

- Implicit Differentiation

We are going to have a taste of calc 3 (multivariable calculus) by considering relationships of two or more variables rather than functions of one variable.

Consider the relation $f(x, y)=x \cdot \sin (x y)$, what does this even look like?

For now we only want two variables and so we set $f(x, y)=1$ (or some other constant so the relation is frozen in the x, y plane) and then ask ourselves: What is the slope of the curve at the point ($-2,0.262$)?

Example: Determine the slope of the curve $y^{2}=x^{3}-x$ at the point $(2, \sqrt{6})$

Example: Show that power rule works for any $n \in \mathbb{Q}$

Practice Problems: 3.7: \# 1-20 (do what you need), 27-36 (do what you need), 37a, 38, 39, 41, 46
\# 42, 47, 50
Look Ahead: What is the derivative of $\arcsin x$?

