Inverse Trig Derivatives

Goal:

- Can use implicit differentiation to find inverse function derivatives
- Can quickly determine the derivatives of inverse trig functions.

Terminology:

• Inverse Functions

Reminder:

- Quiz on Implicit and Logarithmic Differentiation next Wednesday
- Test in 2 weeks

Review: Determine the slope, dy/dx, of the curve below at (0,0)

$$\tan(y^2) = y + x$$

If the the volume of a sphere is given by

$$V = \frac{4}{3}\pi r^3$$

Determine an expression that relates the rate the volume and radius are changing with respect to time.

If $\sin \theta = y$ then what is $\cos^{-1} y$?

We want to expand our knowledge of trig derivatives to include their inverse functions.

Function	Derivative	Inverse	Inverse Derivative
sin x			
cos x			
tan x			
csc x			
sec x			
$\cot x$			

How can we differentiate

$$y = \arcsin x = \sin^{-1} x$$

In Class Evidence

1. Show that the five other inverse trig functions indeed have the correct derivative.

17. Find dy/dx if $y = x \sin^{-1} x + \sqrt{1 - x^2}$

21. $f(x) = \cos x + 3x$. Show that f has a differentiable inverse. Find f(0), $f^{-1}(0)$, $f^{-1}(1)$, and $(f^{-1})'(1)$