Inverse Trig Derivatives

Goal:

- Can use implicit differentiation to find inverse function derivatives
- Can quickly determine the derivatives of inverse trig functions.

Terminology:

- Inverse Functions

Reminder:

- Quiz on Implicit and Logarithmic Differentiation next Wednesday
- Test in 2 weeks

Review: Determine the slope, $d y / d x$, of the curve below at $(0,0)$

$$
\tan \left(y^{2}\right)=y+x
$$

If the the volume of a sphere is given by

$$
V=\frac{4}{3} \pi r^{3}
$$

Determine an expression that relates the rate the volume and radius are changing with respect to time.

If $\sin \theta=y$ then what is $\cos ^{-1} y$?

We want to expand our knowledge of trig derivatives to include their inverse functions.

Function	Derivative	Inverse	Inverse Derivative
$\sin x$			
$\cos x$			
$\tan x$			
$\csc x$			
$\sec x$			

How can we differentiate

$$
y=\arcsin x=\sin ^{-1} x
$$

Practice Problems: 3.8: \# 1-18 (every other), 19, 20, 27, 30, 32

Look Ahead: If you wanted to construct a function $y=f(x)$ such that $y^{\prime}=y$ what would you do?

In Class Evidence

1. Show that the five other inverse trig functions indeed have the correct derivative.
2. Find $d y / d x$ if $y=x \sin ^{-1} x+\sqrt{1-x^{2}}$
3. $f(x)=\cos x+3 x$. Show that f has a differentiable inverse. Find $f(0), f^{-1}(0), f^{-1}(1)$, and $\left(f^{-1}\right)^{\prime}(1)$
